

Welch Allyn Vital Signs Monitor

Medical Division 4341 State Street Road, P.O. Box 220 Skaneateles Falls, NY 13153-0220

> PN 95P360E Copyright 1996

SECTION 1:

General Information

SERVICE MANUAL

Welch Allyn Vital Signs Monitor

Copyright 1996 Welch Allyn Co.

4341 State Street Road Skaneateles Falls, NY 13153-0220 Service Manual pn95P360E Rev. 4, 9/98

*Note: All drawings enclosed are for reference only. Consult the system or the factory for all current drawings.

Revision History

Revision	Sections	Date	Author	Description
1.00	All	4/18/96	JDB/RJS	Introduction of manual.
2.00	All	7/9/96	JDB	Revision made due to problems found in training and changes to the repair software.
3.00	All	5/28/97	JDB	Revisions made for support of Nellcor SpO ₂ module.
4.00	All	10/1/98	JDB	Added schematics, board layouts and bill of materials, miscellaneous corrections.

Table Of Contents

SECTION 1:	General Information Sub	o-Section:	Page:
	To Service Personnel	1.1	1
	Limited Warranty/Warranty Assistance	1.2	3-4
	Basic System Description	1.3	5
	Basic System Operation Index	1.4	7
	Basic System Operation	1.4	8-14
	Block Diagram of Unit Operation	1.5	16-17
	Specifications	1.6	19-23
	Serial numbering system defined	1.7	25
	Firmware Identification	1.8	27
SECTION 2:	Service Set Up		
	Service Manual Intent & Scope	2.1	1
	Test Equipment Bench Lavout	Fig 2.2.1	3-4
	Required Tools/Equipment List	2.2.2	5
	Replacement Parts List	2.3	7-9
	Maintenance/Service Support	2.4	11
	······································		
SECTION 3:	Problem Diagnosis		
	Overview	3.1	1
	Diagnostic Process/Returned units	3.2	3-5
	When and how to calibrate	3.3	7-8
	Loading Unit Software	3.4	9
	Welch Allyn Monitor Self Diagnostic Fault Codes	3.5	11-13
	"Complaint/Cause/Corrective Action"	3.6	15-19
SECTION 4:	Major Component Removal/Replacement		
	(IN ORDER OF REMOVAL ACCESS)		
	Front Housing	4.1	1-2
	Main Fuse F1 on Main PCB	4.2	3-4
	Main Printed Circuit Board (PCB)	4.3	5-6
	DC TO DC Converter (SpO ₂ units)	4.4	7-8
	Pressure Transducer on Main PCB	4.5	9-10
	Display PCB	4.6	11-12
	Key Pad (front housing)	4.7	13-14
	Temperature PCB	4.8	15-16
	Specific Oxygen Board (Nonin)	4.9	17-19
	Specific Oxygen Board (Nellcor)	4.10	21-22
	Pump	4.11	23-24
	Pressure Switch MPL-503	4.12	25-26
	Valve (Pneutronics)	4.13	27-28
	Printer/Printer PCB/keypad	4.14	29-30
	Battery	4.15	31-32

SECTION 5:	Test Procedures S	Sub-Section:	Page:
	Calibration test	5.1	1-2
	Current tests	5.2	3
	Noise test	5.3	5
	Button Test	5.4	7
	Print quality	5.5	9
	Pneumatic test	5.6	11-12
	Hardware Fail-safe Tests	5.7	13
	SpO ₂ option testing	5.8	15
	Temperature option testing	5.9	17
	Check List for CBPM Service Work	5.10	19-20
SECTION 6:	Drawings, Schematics, Board Layouts, Bill of Mate	erials	
SECTION 7:	Repair Test Specifications Specifications	7.1	1-5

CAUTION: PRIOR TO DOING REPAIR WORK, USE GROUNDING MAT AND ANTI-STATIC WRIST STRAP TO MINIMIZE RISK OF DAMAGE TO SENSITIVE ELECTRONIC COMPONENTS.

1.1 To Service Personnel:

Read and understand the Welch Allyn Vital Signs Monitor Operator Manual and this Service Manual. The information contained in both of these publications is subject to change without notice and should not be construed as a commitment by Welch Allyn, Inc.

Welch Allyn assumes no responsibility for any errors that may appear in this manual. If the product and/or its operation varies significantly from any description herein, please contact the WELCH ALLYN TECHNICAL SERVICE DEPARTMENT: 1-800-450-9275 (828) 684-4895 Fax (828)687-9323

Welch Allyn, Inc. 95 Old Shoals Road Arden, North Carolina 28704

This product has been designed to provide a high degree of safety and reliability. However, we can not guarantee against: deterioration of components due to aging, normal wear, tampering, and abuse.

All service and repairs must be performed by authorized Welch Allyn personnel or agents, using approved Welch Allyn replacement parts and approved process materials. Failure to so will invalidate the product warranty. Please refer to the product warranty for specific coverage.

Welch Allyn, Inc. 95 Old Shoals Road Arden, North Carolina 28704 USA 1 800 450-9275

CAUTION WHEN USING ADHESIVES:

ALWAYS WEAR SAFETY GLASSES AND PROVIDE ADEQUATE VENTILATION WHEN USING ADHESIVES, THEIR ACCELERATORS AND RTV SEALANTS. READ, UNDERSTAND, AND COMPLY WITH SAFETY RECOMMENDATIONS IN THE MATERIAL SAFETY DATA SHEET MSDS) FOR THESE MATERIALS. SUPER-GLUES (CA ADHESIVES) CAN CAUSE CORNEAL DAMAGE IF ACCIDENTLY SQUIRTED IN THE EYES, AND CAN SPONTANEOUSLY COMBUST IF SPILLAGE IS WIPED UP WITH CLOTH OR PAPER TISSUES. READ THE WARNINGS AND CAUTIONS PRINTED ON THE BOTTLES OR TUBES OF THESE GLUES!

1.2 Limited Warranty

Welch Allyn warrants the Welch Allyn Vital Signs Monitor, when new, to be free of defects in material and workmanship and to perform in accordance with manufacturer's specifications for a period of two years from the date of purchase from Welch Allyn or its authorized distributors or agents. Welch Allyn will either repair or replace any components found to be defective or at variance from manufacturer's specifications within this time at no cost to the customer. It shall be the purchaser's responsibility to return the instrument to Welch Allyn or an authorized distributor, agent or service representative. This warranty does not include breakage or failure due to tampering, misuse, neglect, accidents, modification or shipping. This warranty is also void if the instrument is not used in accordance with manufacturer's recommendations or if repaired by other than Welch Allyn or an authorized agent. Purchase date determines warranty requirements. No other express warranty is given.

To receive service assistance or to ask questions regarding this warranty, please call or write: Welch Allyn Technical Services Dept. 95 Old Shoals Road Arden, North Carolina 28704 USA 1 (800) 450-9275 or (828) 684-4895 Fax: (828) 687-9323

Service Policy

All repairs on products under warranty must be performed or approved by a Welch Allyn Service Center. <u>Unauthorized repairs will void the warranty</u>. Products out of warranty should be repaired by qualified electronics personnel or a Welch Allyn Service Center.

Technical Assistance

If you have an equipment problem that you cannot resolve, call the Welch Allyn Service Center nearest you for assistance. Technical service support is available to you by telephone on normal business days, from 8:30AM until 4:30PM Eastern Standard Time at the phone numbers listed on the next page.

Before returning a product for repair you must obtain authorization from Welch Allyn. An RGA (Return Goods Authorization) number will be given to you by our service personnel. Be sure to note this number on the outside of your shipping box. Returns without an RGA number will not be accepted for delivery.

Welch Allyn Service Centers

For Service or Repair

USA Customers

Welch Allyn, Inc. Technical Service Centers 95 Old Shoals Road Arden, NC 28704-9739 USA Phone: 828-684-4895 Fax: 828-687-9323

<u>CANADA Customers</u> Welch Allyn Canada Limited

Technical Service Centers 160 Matheson Blvd., East Mississauga, Ontario L4Z1 V4 CANADA Ph: 905-890-0004 or 1 800-561-8797 Fax: 905-890-0008

INTERNATIONAL Customers

Welch Allyn GmbH

Technical Service Center Zollerstrasse 2-4 Road D-7241 7 Jungingen GERMANY Phone: [49]-7477-9271-73 Fax: [49]-7477-9271-93

Welch Allyn Ltd.

21-09 Golden Mile to 6001 Beach Road Singapore 199589 REPUBLIC OF SINGAPORE Phone: [65]-29I-0882 Fax: [65]-291-5780

Welch Allyn Australia Pty. Ltd.

Technical Service Center Ground Floor, 18-20 Orian Road Lane Cove NSW 2066 AUSTRALIA Phone: [61]-29-4183-155 Fax: [61]-29-4183-650

LATIN AMERICA Customers

MDI International

Technical Service Centers 7324 SW 48th Street Miami, FL 33155 USA Phone: 305-669-9591 Fax: 305-669-I 971

1.3 Basic System Description

Introduction

The Welch Allyn Vital Signs Monitor is designed to non-invasively and automatically measure systolic and diastolic pressure, pulse rate, temperature and oxygen saturation (SpO_2) for adult and pediatric patients. All pressure, pulse, temperature and SpO_2 values are displayed on large, easy-to-read displays, and may be printed via an integrated thermal printer, as desired.

The rechargeable battery and wide variety of mounting accessories make the Clinical Monitor convenient for many locations. The operator may choose any combination of simultaneous measurement modalities. This flexibility, combined with features such as programmable alarms and automatic BP cycles, makes the Clinical Monitor ideal for a wide variety of patient monitoring needs.

Refer to the Operator Manual PART NUMBER 5200-85 (SPECIFY LAN-GUAGE) Section 1 for complete information on Indications For Use, Special Features, Supplies and Accessories

1.4 Basic System Operation

INDEX

- 1.5.1 Blood Pressure Operating Modes
 - a. Max/Min Blood Pressure and Pulse Ranges
 - b. Blood Pressure Manual Mode
 - c. Blood Pressure Auto Mode
- 1.5.2 Temperature Operating Modes
 - a. Max/Min Temperature Ranges
 - b. Temperature Normal Mode
 - c. Temperature Monitor Mode
- 1.5.3 SpO Operating Mode 2 2 Max/Min Sp(
 - a. Max/Min SpO₂ Ranges
 - b. SpO₂ Monitor Mode
- 1.5.4 Pulse Rate Feature Max/Min Pulse Rate Ranges

1.4.1 Blood Pressure Operating Modes

When a blood pressure measurement cycle is initiated, the cuff will automatically be inflated to the operator selected pressure level.

The cuff will immediately begin to deflate in a stepped fashion and will determine systolic pressure and diastolic pressure from the pulses sensed by the cuff at various pressure levels. This is the oscillometric method of non-invasive blood pressure monitoring.

Blood pressure measurements may be initiated manually, or automatically at time intervals determined by the user.

At the completion of a measurement cycle the systolic and diastolic pressures are displayed. If the Monitor is in Automatic Mode, the measured values are kept on display until the next BP measurement is initiated. When not in Automatic Mode, the measured values are displayed for two minutes, after which time the display screen is blanked. The most recent BP measurement may be recalled by pressing the REVIEW button.

When in Automatic Mode, if the unit is unable to determine the systolic or diastolic value, the measurement will be automatically repeated once.

1.4.1.a. Max/Min Blood Pressure Ranges

The maximum and minimum ranges of blood pressure are detailed below:

<u>Measurement</u>	<u>Maximum</u>	<u>Minimum</u>
Systolic Pressure	250 mmHg	60 mmHg
Diastolic Pressure	160 mmHg	30 mmHg

1.4.1.b. Blood Pressure Manual Mode

In the Manual Mode, a single blood pressure determination is made only when the START button is pushed. The manual mode is the default mode of operation for blood pressure determinations.

A measurement cycle may be canceled at any time by pressing the CANCEL button. This action immediately initiates a rapid cuff deflation.

The blood pressure measurement data will appear on the display immediately following the measurement. The display will blank after two minutes. If the display is blanked, pressing the REVIEW button on the front panel will recall the measurement. Up to 99 prior measurements are available for review or printing.

In Blood Pressure Manual Mode, the following alarm limits may be activated; SYSTOLIC HIGH LIMIT, SYSTOLIC LOW LIMIT, DIASTOLIC HIGH LIMIT, DIASTOLIC LOW LIMIT, PULSE RATE HIGH LIMIT and PULSE RATE LOW LIMIT. Blood pressure determinations which activate alarms are indicated by flashing displays and a repetitive audible tone. If an alarm limit is violated, subsequent blood pressure determinations may be made only after the alarm condition is reset by pressing any button on the Monitor's display.

1.4.1.c. Blood Pressure Automatic Mode

The Automatic Blood Pressure Mode is entered by pressing the AUTO button. Pressing the AUTO button displays a choice of 10 cycle interval times as follows: "st" (STAT mode) 3 min, 4 min, 5 min, 10 min, 15 min, 30 min, 45 min, 60 min and 90 min. These choices represent the time interval from the beginning of one cycle to the beginning of the next automatic cycle. STAT mode allows the monitor to take continuous blood pressure measurements for 15 minutes. In addition, the operator may choose to disable the Auto Mode by choosing "—" (two dashes).

A measurement cycle may be canceled at any time by pressing the CANCEL button. This action immediately initiates a rapid cuff deflation.

The blood pressure measurement data will appear on the display immediately following the measurement and will remain displayed until the next measurement cycle is initiated.

1.4.1.c. Blood Pressure Automatic Mode continued

In Blood Pressure Auto Mode, the following alarm limits may be activated; SYSTOLIC HIGH LIMIT, SYSTOLIC LOW LIMIT, DIASTOLIC HIGH LIMIT, DIASTOLIC LOW LIMIT, PULSE RATE HIGH LIMIT and PULSE RATE LOW LIMIT. Blood pressure determinations which activate alarms are indicated by flashing displays and a repetitive audible tone. Any alarm limit violation <u>must</u> be reset to continue automatically timed blood pressure determinations. The alarm may be reset by pressing any button on the monitor's display.

1.4.2. Temperature Operating Modes

Thermistor Thermometry measurements are made with the DIATEK/Welch Allyn SureTemp4TM thermometer. Oral and rectal probes utilize single-use disposable probe covers which limit cross-contamination. Oral or rectal temperatures are taken using 'Normal' or 'Monitor' operating modes. Auxiliary temperatures may be taken using the oral probe in the monitor operating mode.

In the normal mode the thermometer's microprocessor "predicts" body temperature in about 4 seconds for oral temperatures and in about 15 seconds for rectal temperatures. The monitor mode displays the patient's actual temperature after 3 minutes and will continue to display an updated temperature as long as the probe remains in place.

Temperature readings may be displayed in Fahrenheit or Celsius scales.

1.4.2.a. Max/Min Temperature Ranges

<u>Readings</u>	Normal Mode	Monitor Mode
Temperature	Max 108.0F Max 42.2C	Max 108.0F Max 42.2C
	Min 84.0F Min 28.9C	Min 84.0F Min 28.9C

1.4.2.b. Temperature Normal Mode

In Normal Mode, the device will measure temperature at discrete intervals and then calculate the rate of change according to a known algorithm. This allows the thermometer to predict the end point that the thermistor would reach if it were left in the mouth until it reached mouth temperature. This predictive feature allows the thermometer to arrive at an accurate oral temperature reading in approximately 4 seconds.

Normal mode is the default operating mode for temperature determinations.

Operator selectable patient alarm limits are not available in Temperature Normal Mode. However, temperatures which are outside of the operating range of the device will be noted on the temperature display.

1.4.2.c. Temperature Monitor Mode

Continuous Monitor Mode operation is normally used for longer term monitoring and when difficult situations prevent accurate temperatures from being taken in the normal mode. The probe must be in contact with tissue for at least three (3) minutes for accurate temperature measurement. Monitor mode temperatures may not be identical to predicted 'Normal' temperatures because of ambient temperature influence and other factors. The trend in temperature is the important standard to be observed when in the 'Monitor' mode.

Operator selectable patient alarm limits are not available in Temperature Normal Mode. However, temperatures which are outside of the operating range of the device will be noted on the temperature display.

1.4.3 SpO₂ Operating Mode

The Welch Allyn Vital Signs Monitor incorporates either the Nonin[®] pulse oximetry system or the Nellcor[®] pulse oximetry system which determines arterial oxyhemoglobin saturation (% SpO₂) by measuring the absorption of red and infrared light passed through the tissues. Changes in absorption caused by pulsation of blood in the vascular bed are used to determine arterial saturation and pulse rate.

Oxygen saturation percent is calculated with each pulse detected, and thus the monitor display is continually updated. The pulse signal bar graph is an indicator of the strength and quality of the detected pulses.

When SpO_2 is measured, the patient's pulse rate is also measured and displayed. A pulse rate measurement from the SpO_2 determination overrides a pulse rate measurement derived from a blood pressure measurement.

In SpO₂ monitoring mode operator selectable alarm limits for low SpO₂ % may be activated. A condition which violates the SpO₂ low limit alarm is indicated by a flashing display and repetitive audible tone. Should a patient alarm condition for \leq or pulse rate occur, the Monitor will indicate an alarm condition (flashing & beeping) while continuing to monitor and display the patient's current SpO₂%. The alarm will automatically reset when the patient's condition returns to within the preset alarm parameters.

Should a patient alarm condition for SpO_2 or pulse rate occur, the operator may invoke "Silence Mode" by pressing the SILENCE button. This will silence the audible tone (display will continue to flash), while the practitioner attends to the patient and the monitor. Silence mode resets automatically after 30 seconds, or when the patient's condition returns to within the preset alarm parameters.

Removal of the SpO_2 sensor from the patient will initiate an alarm. To reset the sensor alarm, press any button on the monitor's display.

 SpO_2 is generally measured via pulses detected using a finger sensor. However, for certain situations SpO_2 may be measured at alternate sites including the earlobe, forehead and toes. Special sensors must be employed in these situations.

1.4.3.a. Max/Min SpO₂ Ranges

The SpO₂ sensor is designed to detect oxygen saturation as follows.

	<u>Maximum</u>	<u>Minimum</u>
SpO	99%	40%

1.4.3.b. SpO₂Monitor Mode

The SpO₂ monitor performs most accurately with the finger clip sensor, which may be used on all fingers except the thumb. The finger clip sensor is recommended for spot checks or short term (<30 minutes) continuous monitoring.

The device determines arterial oxyhemoglobin saturation (SpO₂ %) by measuring the absorption of red and infrared light passed through the tissue. Oxygen saturation and pulse rate are displayed on the LED digital display. On each detected pulse, the pulse signal bar graph flashes. The intensity of this signal is a simple visual indicator of waveform signal strength, and can identify situations where the pulsatile nature of the tissue may not be adequate for an accurate SpO₂ reading. The update interval of the bar graph should correspond to the patient's pulse rate. This is an indication of the quality of the SpO₂ signal.

1.4.4 Pulse Rate Feature

The Welch Allyn Vital Signs Monitor is capable of determining pulse rate as an adjunct to the blood pressure measurement and the SpO₂ measurement.

The pulse rate, in beats per minute, will be determined primarily from the SpO_2 measurement methodology. In the case where SpO_2 is not available, or is disabled, the pulse rate display will be driven from data collected as part of the blood pressure measurement method.

There are two operator selectable alarm limits for the pulse rate. They are PULSE RATE HIGH LIMIT and PULSE RATE LOW LIMIT. Pulse rates which activate alarm limits are indicated by a flashing display and a repetitive audible tone.

Should a pulse rate alarm occur when the pulse rate measurement is derived from the blood pressure measurement, no subsequent blood pressure or pulse rate measurements may be made until the alarm is reset. The alarm may be reset by pressing any button on the monitor's display.

Should a pulse rate alarm occur when the pulse rate measurement is derived from the SpO_2 measurement, the monitor will indicate an alarm condition (flashing & beeping) while continuing to monitor and display the patient's current SpO_2 % and pulse rate. The alarm will automatically reset when the patient's condition returns to within the preset alarm parameters.

Should a patient alarm condition for pulse rate occur during SpO₂ monitoring, the operator may invoke "Silence Mode" by pressing the SILENCE button. This will silence the audible tone (display will continue to flash), while the practitioner attends to the patient and Monitor. Silence mode resets automatically after 30 seconds, or when the patient's condition returns to within the preset alarm parameters.

1.4.4.a. Max/Min Pulse Rate Ranges

The maximum and minimum pulse rate ranges are as follows:

Pulse Rate

<u>Maximum</u> 200 bpm Minimum 40 bpm

Figure 1.5 Block Diagram of Unit Operation

Figure 1.5 Block Diagram of Unit Operation

1.6 Specifications

Index:

- 1.6.1 Performance Specifications
- 1.6.2 Technical Specifications
 - a. Mechanical Specifications
 - b. Electrical Specifications
 - c. Environmental Specifications
- 1.6.3 Printer Specifications

1.6.1 Performance Specifications

The performance specifications of the Clinical Vital Signs Monitor are as follows:

CUFF PRESSURE RANGE

0 mmHg - 300 mmHg

INITIAL CUFF INFLATION

120 mmHg, 140 mmHg, 160 mmHg, 200 mmHg, 240 mmHg or 280 mmHg depending on pressure preset level.

SYSTOLIC DETERMINATION

Maximum: 250 mmHg Minimum: 60 mmHg

DIASTOLIC DETERMINATION

Maximum: 160 mmHg Minimum: 30 mmHg

BLOOD PRESSURE ACCURACY

Blood pressure accuracy meets or exceeds SP10-1992 AAMI standards for non-invasive blood pressure accuracy (AAMI standard: \pm 5 mmHg mean error; 8 mmHg standard deviation). Blood pressure accuracy is validated for pressure measurement using the upper arm only.

BLOOD PRESSURE DETERMINATION TIME

20 seconds to 45 seconds typical, 140 seconds maximum.

PULSE RATE DETERMINATION

Maximum: 200 bpm Minimum: 40 bpm

PULSE RATE ACCURACY

 SpO_2 Module Heart Rate $\pm 3.0\%$ Blood Pressure Algorithm Heart Rate $\pm 5.0\%$

OVERPRESSURE CUTOFF

295 mmHg to 330 mmHg

TEMPERATURE DETERMINATION

Normal Mode	Maximum	108.0F (42.2C)
	Minimum	84.0F (28.9C)
Monitor Mode	Maximum	108.0F (42.2C)
	Minimum	84.0F (28.9C)

TEMPERATURE ACCURACY

Temperature accuracy meets ASTM E112-86: "Standard Specification for Electronic Thermometer for Intermittent Determination of Patient Temperature."

TEMPERATURE DETERMINATION TIME

Normal Mode: ORAL: 4 seconds typical, 15 seconds maximum Monitor Mode: ORAL: 3 minutes.

OXYGEN SATURATION RANGE (SpO₂%)

40-99% oxygen saturation

SpO, ACCURACY

 $\pm 3\%$ in the range of 70-99% oxygen saturation (1 Standard Deviation)

BATTERY CHARGING

To at least 90% capacity in 12 hours. Unit will operate and charge battery simultaneously when connected to power source.

1.6.2 Technical Specifications:

1.6.2.a Mechanical Specifications

Dimensions

Height	6.5 inches	(16.5cm)
Length	8.6 inches	(21.8cm)
Depth	5.0 inches	(12.7cm)

Weight

Approximately 6 pounds (2.8Kg)

<u>Color</u>

Oral Temperature Probe - Blue Rectal Temperature Probe - Red

<u>Mounting</u>

Self-supporting on rubber feet IV Pole Mountable Custom Mobile Stand Wall Mountable Attaches to Bed Rail

Portability

-May be hand carried when held by the recessed handle.

-When attached to an IV pole, or mounted on its custom mobile stand, the monitor and accessories can be wheeled from patient to patient.

-When attached to the bed rail may be transported with the patient within the hospital environment.

Operator Instructions/Alarm Interpretation

Comprehensive Operator Manual available. Quick reference operator instructions and alarm interpretation are located on side panel labels.

1.6.2.b Electrical Specifications

Power Requirements

Patient-Rated isolation transformer is connected to AC mains:

North American Version 120VAC, 60 Hz.

International Versions: 220-240VAC, 50-60Hz.

Battery

6 v, 4 Ahr / 20 hr Sealed Rechargeable Lead Gel Cell

A fully charged battery will support 200 "typical" blood pressure determinations taken at 3 minute intervals (10 hours). Battery is 90-100% charged after 12 hours of charging. The battery automatically charges when the monitor is powered through the AC power transformer. The battery will charge faster when the instrument is not in operation.

1.6.2.c Environmental Specifications

Operating Temperature

+10C to +40C +50F to +104F

*Exception: Thermometry module will not operate below 60-F (16-C).

Storage Temperature

-20C to +50C -4F to +122F

Relative Humidity

15 to 90% (non-condensing)

Operating Altitude

-170 m to + 4877 m -557 ft. to +16,000 ft.

1.6.3 Printer Technical Specifications

<u>Type</u>

Thermal printer, dot matrix

Print speed

46 cps

Paper feed

friction type

<u>Voltage</u>

5 v

Average power when printing 880 mA

Paper width

57 - 58 mm

1.7 Serial Numbering System Defined

The serial plate for the 52000 Series (Welch Allyn Vital Signs Monitor) is located on the bottom of the unit. The serial number consists of seven digits.

The two or four digits on the left are the year of manufacture.

The four or five digits on the right are the sequence of build starting with 00001 annually.

(The example unit was the 569th unit built in 1995 or 1999).
1.8 Firmware Identification

To confirm these levels, place the unit into the "Configuration" mode. Hold down the <u>Start</u> button while the unit is being powered up.

Release the button when the main firmware version appears in the Systolic/Diastolic window. The SpO_2 option and Temperature option (if installed) will appear in the Temperature and SpO_2 displays.

Verify the firmware levels by reviewing the Repair Test Specifications document.

SECTION 2:

Service Set Up

2.1 Intent of Manual and Product Scope

This manual provides technical service and recalibration information to technicians authorized to repair and recalibrate Welch Allyn, Inc. products. When used in conjunction with the required test equipment and tools, technicians will be able to diagnose, repair, recalibrate, and test the Clinical Vital Signs Monitor. The manual includes: Calibration Software and Recalibration instructions, fault/cause analysis, step by step disassembly and reassembly procedures, repair, adjustment, and retest procedures.

2.2.1 Test Equipment Bench Layout:

Figure 2.2.1 depicts recommended layout of test equipment and special tools for service and recalibration of the Welch Allyn Vital Signs Monitor.

FIGURE 2.2.1 BENCH layout for recalibrating and testing Welch Allyn Vital Signs Monitor

Service Notes:

The following commercially available equipment is required for service and calibration of the Welch Allyn Vital Signs Monitor – not available from Welch Allyn.

- IBM compatible 386 20 MHz computer or better. The computer must have Windows 3.1 or higher, DOS 5.1 or higher, a serial port.
- 2 Digital Multi-Meters. These meters must have 4 1/2 digit displays for accuracy.
- Power Supply. 0-20 Vdc adjustable with 0-3A output.
- Oscilloscope. 60 MHz minimum.

2.2.2	Welch Allyn	Vital Signs	Service	Tools
-------	-------------	--------------------	---------	-------

OPTION II: Partial Service Set ——			: Partial Service Set	
	C	OPTION I: C	omplete Service Set 🚽	
DESCRIPTION	TOOL #	LEAD TIME	COMPANY	
100cc Test Volume	T112819	3 Weeks	Welch Allyn	
250cc Test Volume	T112818	3 Weeks	Welch Allyn	
500cc Test Volume	T112854	3 Weeks	Welch Allyn	
Digital Timer	8456T12	3 Days	McMaster-Carr •	
NeTech Meter*	200-2000IN	3 Days	NeTech	
– OR –				
Setra Meter* (0-10 PSIG)	2270-01	6-8 Weeks	Setra Systems	
Pliers	T112458	3 Weeks	Biltmore Tool	
Bulb And Valve	5088-01	3 Weeks	Welch Allyn	
Keypad Engaging Tool	T112067	3 Weeks	Welch Allyn	
ESD Kit	T112469	Stock	Cameron & Barkley	
WIRE Cutters	T112486	Stock	Welch Allyn	
Tweezers	T112511	Stock	Welch Allyn	
Electronic Swabs	318M2	Stock	Welch Allyn	
Pneumatic Tubing (Cut)	97P24	Stock	Welch Allyn	
"Y" Fitting	9586TPK4	2 Weeks	Festo •	
"T" Fitting (3)	9585TPK4	2 Weeks	Festo •	
Test Cable	130S28	3 Weeks	Welch Allyn	
Pneumatic Clamps (3)	21730-001	Stock	VWR Scientific	
Torque Screwdriver	T112917	Stock	Tool And Gauge	
Torque Screwdriver	T112918	Stock	Tool And Gauge	
Custom Repair Software	130S29E	Stock	Welch Allyn	
#4 Phillips Bit	T112919	Stock	Biltmore Tool	
#6 Phillips Bit	T112933	Stock	Biltmore Tool	
T8 Torx Bit	T112464A	3 Weeks	Welch Allyn	
7/16" Wrench	T112990	Stock	McMaster Carr	
Cable Tie Tool	T112845	Stock	Newerk •	
Nonin Patient Simulator	8000S	Stock	Nonin • •	
Nonin Phantom Fingers	9440	Stock	Nonin •	
Nonin Cable	8500-I	Stock	Nonin • •	
Diatek 9600 Calibrator	01800-110	Stock	Diatek •	
Diatek Cal. Key	06137-000	3 Weeks	Diatek •	
LG. Adult Cuff/Bag	5200-02	Stock	Welch Allyn	
Pneumatic Tubing (Coiled)	5200-07	Stock	Welch Allyn	
Service Manual	5200-86E	Stock	Welch Allyn	
Nellcor Patient Simulator	SRC2	Stock	Nellcor •	
Nellcor Test Cable	EC-8	Stock	Nellcor •	

* Choose one of these meters for calibration. DO NOT ORDER BOTH METERS.

Allowing the bio-medical department to use a water bath to check temperature (measuring against a temperature standard) That standard must be accurate to with +/- 1F.

See Section 1.1 for ordering tools.

2.3 Replacement Parts – Welch Allyn

In addition to individual parts listed below, SPARE PARTS KITS have been made up for your convenience. This assures that you will have all the mounting materials and other small items needed for a repair. The foam pads mounted on the battery are one such example. Kits will not be broken down. FOR AUTHORIZED REPAIR SITES ONLY.

PART#:	DESCRIPTION:
130S1-E 130S1-S	English Front Housing Kit Spanish Front Housing Kit Iabels for the four different configurations i.e.:
130S1-F 130S1-G	French Front Housing Kit German Front Housing Kit Italian Front Housing Kit BP w/Printer Only, BP w/Printer Only, BP w/Printer + SpO ₂ , BP w/Printer + Temp
13052	Front Housing Switch Array SpO ₂
130S3*	Main PCB Assembly Includes: hardware
130S4*	Display PCB Assembly Includes: hardware
130S5*	Valve
130S6	Pneumatic Connector Includes: connector, washer, nut, and grommet
130S7*	Pump Assembly Includes: pump, cable tie mount, 2 cable ties, foam pads, instructions, specifications
130S8E	English Rear Housing Kit
130S8F	French Rear Housing Kit
130S8G	German Rear Housing Kit
130S8I	Italian Rear Housing Kit
130S8S	Spanish Rear Housing Kit
130S9	Power Jack
130S10	Back Panel
	Includes: panel and hardware
130S11	Tubing Assembly
	Includes: all tubing, "T" fitting, instructions
130S12	Pressure Switch Includes: switch and hardware
130S13	Bumpers (2 ea.)
130S14	Battery Access Plate
	Includes: plate and hardware
130S15	Wire Harness
	Includes: 14 pin MTA connector, 3 pin MTA connector, faston receptacles for the power supply, power jack, battery, and valve lead wires all assembled
130S16	Temperature Plug
130S17	Printer Assembly
	Includes: thermal printer, double faced adhesive foam all assembled
130S18*	Printer Housing
	Includes: housing, switch array, PCB, hardware, flex strip
130S19	RS232 Cable
	Includes: DB9 connector, hardware, 4 pin MTA, lead wires all assembled

Welch Allyn Replacement Parts:

PART#: DESCRIPTION:

130S20*	SpO, PCB (Nonin)
	Includes: PCB with cable attached, DB9 connector and cable (not attached),
	and hardware with instructions
130S21	SpO ₂ Sensor Interconnect (Nonin)
	Includes: lead wires and 4 pin MTA connector
130S22*	Temperature PCB Assembly
	Includes: PCB, hardware, lead wire and connectors
130S23	Temperature Connector
	Includes: connector, lead wires and hardware
130S24	Temperature Probe Housing
	Includes: housing and hardware
130S26	Main PCB Fuse
130S27	Printer Paper Cover
130S28	Cable, DB9 Female to DB9 Female 42" long
130S29	Software, Repair
130S34	Kit, Repair, Nellcor SpO, PCB with connector
130S35	Kit, Repair, SpO, Cable (Nellcor)
130S36	Kit, Repair, SpO ² Cable to Main (Nellcor)
130S37	Upgrade, Software, Version 3.11
41P100**	Check Valve
117S144**	DC to DC Converter
114S588**	Pressure Sensor
66S530**	"Printer, Flat Cable"
5200-01	Cuff Assy, Adult with 1 tube bag
5200-02	Cuff Assy, Lg Adult with 1 tube bag
5200-03	Cuff Assy, Child Print with 1 tube bag
5200-04	Bag, Adult with cut tube
5200-05	Bag, Lg Adult with cut tube
5200-06	Bag, Child with cut tube
5082-59	Cuff, Adult Black
5082-61	Cuff, Lg Adult Black
5082-63	Cuff, Child Print
5200-07	Pressure Hose with new Luer fitting
5200-08	Calibration T connector
5200-20	Probe, Oral 9 Ft, Diatek
5200-22	Probe, Rectal 9 Ft, Diatek
5200-40	Sensor, SSpO, Finger Clip (3 meter cord) (Nonin)
5200-41	Sensor, SpO, Éar Clip (Nonin)
5200-42	Sensor, SpO ₂ Flex (Nonin)
5200-44	Sensor, SSpÔ, Reflectance (Nonin)
5200-45	Holder, SpO, Reflectance Sensor (Nonin)
5200-46	Sensor, SpO ₂ Adult Finger Flexi-form (Nonin)
5200-47	Sensor, SpO ² Ped Finger Flexi-form (Nonin)
5200-50	Tape, SpO, Šensor Attachment (Nonin)
5200-51	Tape Strips, Hydrogel for SpO, (Nonin)
5200-52	Cable, SpO, Extension 3 Ft (Nonin)
5200-53	Kit, SpO ₂ Finger Phantom Calibration (Nonin)
5200-54	Sensor, SpO ₂ Finger Clip (1 meter cord) (Nonin)
5200-12	Tubing, straight 8 ft. with fitting
5200-56	Pediatric Finger Clip Sensor (Nonin) 9 ft. cable
5200-55	Extension Cord 10 ft. for SpO ₂ sensor (Nonin)

PART#:	DESCRIPTION:
5200-60	Mobile Stand Kit
5200-61	Mobile Stand Kit, Modified
5200-62	Wall Mount Kit
5200-63	Wall Mount Kit, Modified
5200-64	IV Pole Kit
5200-65	IV Pole Kit, Modified
5200-66	Bed Rail Kit
5200-67	Bed Rail Kit, Modified
5200-68	Cuff Clip
5200-69	Accessory Pack
7052-25	Printer Paper (5 rolls)
5200-101	Transformer, USA 120V, 60 Hz
5200-102	Transformer, Europe 220V, 50 Hz
5200-103	Transformer, UK 230V, 50 Hz
5200-103	Transformer, Australia 230V, 50 Hz
5200-110	Power Cord, USA/Japan
5200-111	Power Cord, Europe
5200-112	Power Cord, UK
5200-113	Power Cord, Australia
5200-114	Power Cord, Switzerland
5200-115	Power Cord, South America
5200-84	Battery, 6 Volt Lead Acid
D-25	OXISENSOR II adult digit oxygen transducer (Nellcor)
D-25L	OXISENSOR II adult digit oxygen transducer with long cable (Nellcor)
D-20	OXISENSOR II pediatric oxygen transducer (Nellcor)
R-15	OXISENSOR adult nasal oxygen transducer (Nellcor)
I-20	OXISENSOR II infant digit oxygen transducer (Nellcor)
EC-8	Extension Cable – 8 foot (Nellcor)
OXICLIQ-A	Adult oxygen transducer for use only with OXICLIQ sensor cable OC-3 (Nellcor)
OXICLIQ-P	Pediatric oxygen transducer for use only with OXICLIQ SENSOR CABLE MODEL OC-3 (Nellcor)
OXI-A/N	OXIBAND adult/neonatal oxygen transducer (Nellcor)
OXI-P/I	OXIBAND pediatric/infant oxygen transducer (Nellcor)
RS-10	Reflectance oxygen transducer (Nellcor)
D-YS	DURA-Y oxygen transducer (Nellcor)
SRC-2	Portable oximetry tester (Nellcor)
DS100A	DURASENSOR adult oxygen transducer (Nellcor)
OC-3	Cable, OXICLIQ Sensors (Nellcor)
D-YSE	Ear Clip (use with DURA-Y sensor) (Nellcor)
D-YSPD	Pedicheck Pediatric Spot-Check (use with DURA-Y Sensor) (Nellcor)
ASP-3	Sensor Assortment Pack (Nellcor)
05031-101	Diatek Probe Covers
5200-25	Temperature Cal. Key
01800-210	Model 9600 Temperature Cal. Kit 110V.
5200-85E	Operations Manual
5200-86E	Service Manual

* - Indicates that these parts can be traded in. If the part is under warranty, with a trade in you get full credit. If the parts is out of warranty, you will get a 40% discount from the price."

** - Only regional service centers may purchase these parts.

See section 1.1 for ordering parts.

2.4 Welch Allyn Vital Signs Monitor Maintenance and Service Support

Owner Maintenance: Non-Technical customers can perform normal maintenance per the instructions provided in the Operator Manual, Section V. End users will be able to perform basic operations such as replacement of: hoses, cuffs, probes, printer paper and batteries. On this level the unit will not be opened. However, opening of the WELCH ALLYN VITAL SIGNS MONI-TOR by untrained individuals may damage the unit and void the warranty.

Technical Service/Repair/Re-calibration: Properly trained and equipped biomedical departments and service centers will be able to utilize the content of this Service Manual. Technical skills in electronics and PC skills are required. These departments and centers must have service manual and re-calibration software, repair tools and test equipment as listed in this manual. They must also have minimum recommended quantities of repair parts and sub-assemblies. See the listings of repair parts and kits in this manual.

SECTION 3:

Problem Diagnosis

3.1 Overview

The Welch Allyn Vital Signs Monitor can be diagnosed and repaired to board level without the necessity of electrical schematics.

Repair/Replace decisions will be made on the basis of information obtained from Calibration Software, Test Software, Printed Troubleshooting tables as seen in this section and in the Error Code Chart.

With a few exceptions, individual circuit board components will not be on the repair bill of materials, and therefore can not be ordered.

3.2 Diagnostic Procedure for Returned Units

NOTES:

- A. The word "unit" in this text refers to the WELCH ALLYN VITAL SIGNS MONITOR.
- B. Menu|Choice represents menu commands. Rather than use the phrase "choose the exit command from the File menu."
- 1. Remove the battery from the unit. Connect the unit to the power supply. Set the power supply to 6.5 Vdc +/- 0.5 Vdc.
- 2. With a digital multi-meter, check the voltage of the battery. If the voltage of the battery is less than 6.0 Vdc, the battery needs to be charged. Up on completion of this procedure, place the battery back into the unit and plug in the charger. Let the battery charge for 8 hours. Next allow the unit to sit for 1 day and recheck the battery voltage. If the voltage is below 6.0 Vdc, change the battery. **(Reference section 4.15)**
- 3. Power up the unit. If the unit does not power up:
 - A. Insure the power supply is on and has the correct requirements as called out in 1. (see above).
 - B. The power supply is connected to the unit.
 - C. Check that the fuse is not blown. (Reference section 4.2)
 - D. Change the main PCB. (Reference section 4.3)
 - E. Change the display PCB. (Reference section 4.6)

If the unit does power up:

- 4. To check the display PCB, observe the unit during power up. All of the LEDs should be lit for 1-2 seconds before the unit gets to its normal mode. If the unit has any LEDs out change the display PCB. (Reference section 4.6)
- 5 Run a couple of blood pressure cycles to ensure proper inflation/deflation and readings.
- 6. If the unit is not inflating/deflating properly:
 - A. Open up the unit by removing the 6 housing screws.
 - B. Check the unit for pinched tubing if the unit is deflating too slowly. With the housing opened, re-run the blood pressure cycle to see if the deflating problem has been fixed. Re-route tubing.
 - C. If there are no pinched tubes, change the valve. (Reference section 4.13)

- D. If this still does not clear up the problem of deflation too slow, change the pressure switch. (Reference section 4.12)
- E. Power down the unit. Place unit into detailed test mode by holding down the "start" and "cancel" buttons as power is re-applied. Press the review button until "cal" appears in the systolic window. Press the "start" button to close the valve. Pump up the unit using the bulb and valve inflate the unit to 250 mmHg. Confirm the unit meets the specification for leak called out in the Repair Test Specification document. If the unit is leaking:
- F. Pinch off the tubing leading to the pump. If this stops the leak, change the pump. (Reference section 4.11)
- G. Pinch off the tubing leading to the valve. If this stops the leak, change the valve. (Reference section 4.13)
- H. Pinch off the tubing leading to the transducer. If this stops the leak, change the transducer. (Reference section 4.5)
- I. Pinch off the tubing leading to the pressure switch. If this stops the leak, change the pressure switch. **(Reference section 4.12)**
- 7. If the unit is inflating/deflating properly however there is no reading given, change out the main PCB. **(Reference section 4.3)**
- 8. FOR THE PRINTER OPTION: Load the printer with paper if there is no paper. Press the form feed button to see if that will advance the paper. Next, press the print button to see if the unit will print. If these functions do not work, first change the printer PCB and re-test. If the problem is still evident, change out the printer itself. (Reference section 4.13)
- FOR THE SpO₂ OPTION: Connect the patient simulator to the unit SpO₂ connection by the Nonin or Nellcor cable (depending upon which is installed). Confirm readings equal to the specifications called out in Section 7. If there is no reading, change out the SpO₂ connector and PCB. (Reference section 4.9 or 4.10 depending on which SpO₂ Module is installed)
- 10. FOR THE TEMPERATURE OPTION: Plug in the Diatek 9600 calibrator and set it for 96.4 F/ 35.8 C or use a water bath between 84 F (28.8 C) and 106 F (41.1 C). Remove the temperature probe and view the temperature window on the display. Make sure the temperature is in the "monitor mode." This will be displayed at the bottom of the window. If the unit is not in monitor mode, wait approximately 40-60 seconds and the unit will automatically transfer into the monitor mode. Place the probe into the small hoe on top of the 9600 calibrator or into bath. If there is no reading place the probe back into its housing, remove and retry. If there is still no reading, change the probe and retry the test. If there is still no reading place the probe back into the housing, unplug the probe and plug in the cal-key, remove the probe and Confirm reading meets specifications called out in Section 7. If there is no reading at this point, change the temperature connector and PCB. (**Reference section 4.8**)

11. FOR THE RS232 OPTION: Connect the RS232 cable from the PC to the unit. Select *Unit/Information* in the repair software. If a communication error appears on the PC screen, check the connection to the unit and the PC. Select *Tools/Options* to insure that the communication port that the cable is connected to is selected. Re-try the test. If the error is still present change out the main PCB.

3.3 Calibration Procedure

3.3.1 VOLTAGE CALIBRATION

- 1. Connect the unit to the test station by hooking up the pneumatic tubing, cable from the PC, and removing the battery and connecting the power supply.
- 2. Place the unit into the "detailed test mode" by holding down the start and cancel buttons while powering up the unit. Allow the software versions to be displayed then press the review button until the unit displays "BAT" in the systolic window.
- 3. Go to the repair software and choose *Calibrate/Voltage*. Adjust the power supply to between 5.6 Vdc and 5.9 Vdc.
- 4. View the digital multi-meter (DMM) that is connected to the power supply reading the voltage. Move the cursor to the "Calibrated Voltage" box and type in the voltage that you observe on the DMM. In the software, click on "Update."
- 5. The software will then prompt you to enter in a "Calibration Signature." Move the cursor to the box and enter the three initials of your name. Then click "OK."
- 6. At this point you should see the voltage on the display of the WELCH ALLYN VITAL SIGNS MONITOR change to match that of the DMM.
- 7. Adjust the power supply to 6.5 Vdc \pm .05 Vdc.

3.3.2 PRESSURE CALIBRATION

- 1. Connect the unit to the test station by hooking up the pneumatic tubing, cable from the PC, and removing the battery and connecting the power supply.
- 2. Place the unit into the "detailed test mode" by holding down the start and cancel buttons while powering up the unit. Allow the software versions to be displayed then press the review button until the unit displays "CAL" in the systolic window. Make sure that clamps are on the 100cc and 250cc volumes.
- 3. Go to the repair software and choose *Calibrate/Manometer*.
- 4. Press the "Calibrate" button to begin the calibration procedure.
- The software will first check to make sure that the units internal temperature is below 32°C. If it is not the user will be warned that they can not perform a calibration at this time.
- If the temperature is within the 32°C limit the software will tell the unit to perform an auto-zero. If this is unsuccessful the user will be prompted to perform a zero potenti-ometer calibration. This is an automatic calibration. The user just needs to answer YES or NO. A no will cancel the calibration procedure.
- 7. Once a successful autozero has been completed the "Gain Calibration at 200 mmHg" box will be activated. This box consists of a slider control and a pressure display. To perform the span calibration pump the unit up to 200 mmHg +/- 5 mmHg using the bulb. Wait 15 seconds to allow the pressure to stabilize. Adjust the slide control until the reading on the PC matches as close as possible to the reading on the pressure standard. Once the difference has been minimized, Press "record" and proceed.
- 8. Once the gain calibration is complete the pressure calibration points can be calibrated. There are three points that require calibration, 95, 195 and 285 mmHg. First set the pressure to the desired value within +/- 5 mmHg of that value. Wait 15 seconds to allow the pressure to stabilize. Adjust the slide control until the reading on the PC matches as close as possible to the reading on the pressure standard. Press "record" after each setting. YOU MUST DO THIS FOR ALL THREE VALUES. Once this is completed press the "update" button.
- 9. The software will then prompt you to enter in a "Calibration Signature." Move the cursor to the box and type the three initials of your name. Then click "OK."
- 10. Press **Close** to exit the calibration dialog box.

3.4 Loading Unit Software

***WARNING: DO NOT REMOVE POWER OR TURN OFF UNIT DURING THE SOFTWARE** LOADING OPERATION. The unit will be in an unrecoverable state if this happens.

- 1. Plug the wall transformer into the Welch Allyn Vital Signs Monitor.
- 2. Connect the unit to the RS232 cable of the test station.
- 3. Start the Repair Software by clicking on its icon. Go into Unit/Update Software.
- 4. Press the "Select File" button in the software.
- 5. Choose the correct unit software (cbpXXX.mot) file per instructions from the manufacturer. (Where "XXX" is the number of the software version to be loaded)
- 6. Once the software file is selected, press the "OK" button. This will return you to the Repair Software. The Repair Software will then ensure that the cbpXXX.mot file you are about to load into the unit is "Valid." If so, press the "Load" button in the software. The unit will take about 10 minutes to load the software. (If the software file you have chosen is "Not Valid," repeat steps 4 and 5, choose the correct version and then proceed. If problems persist, please contact your nearest Regional Service Center.)

NOTE: If the computer or the software malfunctions during the software loading operation, re-boot the computer, re-start windows and start the Repair Software. The Repair Software will start in the "Recovery Mode." The software will prompt you to continue/ resume the software loading process.

3.5 Welch Allyn Vital Signs Monitor Self Diagnostic Fault Codes

The following is a list of all possible error codes and their meanings.

MAIN BOARD ERROR CODES

ERROR CODE	DESCRIPTION
CO1	User abort
CO2	Auto-zero failure
CO3	Inflation too fast
CO4	Inflation too long
CO5	Excessive noise
CO6	Outside measuring range
" "	BP not available
E10	Over pressure
E11	Fail-safe violation
E12	Ambient temp. limit
E13	Battery failure
E20	A/D failure
E30	ROM failure
E31	RAM failure
E32	Factory EPROM checksum fail
E33	User EPROM checksum failure
E34	A/D converter failure
E35	SpO ₂ PCB failure
E36	Temperature PCB failure
E37	Printer failure
E38	Real time clock failure

SpO₂ BOARD ERROR CODES (Both Nonin and Nellcor)

ERROR CODE	DESCRIPTION
" <u> </u> "	Sensor error
E7	SpO ₂ PCB bad
""	SpO_{2} off

TEMPERATURE BOARD ERROR CODES

ERROR CODE	DESCRIPTION
E0.0	Stack RAM error
E0.1	Internal RAM test failure
E0.2	Internal ROM checksum failure
E0.3	Instrument error
E0.4	EEPROM checksum error
E0.5	RAM checksum error
E0.6	EEPROM busy too long
E0.7	EEPROM address write error
E1.0	External interrupt 0
E1.2	Transmitter interrupt
E1.3	Timer Y interrupt
E1.4	Timer 2 interrupt
E1.5	External counter interrupt
E1.6	Timer 1 interrupt
E1.7	Serial I/O
E1.8	Software break
E2.0	Low cal. resistor pulse width error
E2.1	High Cal. resistor pulse width error
E2.2	PIB resistor pulse width error
E2.3	Probe pulse width error
E2.4	
	DTP toot error
	Piblesterio
E3.2	Electing point overflow
E4.0	Log of zero undefined
E5.0	Ω warmer transistor error
E5.0	C warmer transistor error
E5.2	Warmer protection circuit failure
	Droho wormer net worming
	Probe warmer not warming Probe missing, thermister failure
E5.4	Warmer circuit failure
E5.6	Warmer overbeated
E 5.7	Warmer watch-dog time out
E0.7 F6 1	Serial overrun error
F6 2	Serial framing error

TEMPERATURE BOARD ERROR CODES (CONT'D)

ERROR CODE	DESCRIPTION
E6.3	No data time out error
E6.4	Transmit buffer overflow
E9.1	Undefined software state
C20	Probe missing or broken
C21	Probe Characterization aborted
Р	Probe position
PC	Probe characterization
""	Temperature off

3.6 Complaint/ Cause/ Corrective Action

COMPLAINT	CAUSE	CORRECTIVE ACTION
Does Not Power Up	Battery Voltage LOW Battery Voltage Less Than 5.4 Volts Fuse F1 Blown Battery Connector Charge Light not on when Charger Plugged in	Check Voltage Level Charge Battery Replace Fuse After Cause Of Short Identified Verify Connection And Replace Required Change Main PCB.U28 is blown.
	Overpressure Hardware Fails	Check For Pinched/Blocked Hose Verify Performance Of The Following Parts: A) Pressure Switch B) Transducer C) Valve D) Main PCB
Air Leak	Pneumatic Connector Pump Valve Unit Tubing Cuff Overpressure Switch	Check Seals Verify Proper Operation Verify Proper Operation Check Valve Drivers Verify Connectors And Integrity Of Hoses Verify Air Seal Of Coiled Hose And Cuff Connectors Verify Air Seal From Pneumatic Connector Of Welch Allyn Vital Signs Monitor To Coiled Hose. Verify Connections And Integrity Of Hose. Verify Switch Operation.
SpO ₂ Failure	SPO2 Board And Harness	Replace Probe And Retest. Verify All Connections To The SpO ₂ Board Replace SpO ₂ Board.

COMPLAINT	CAUSE	CORRECTIVE ACTION
Temp Failure	Probe	Replace Probe And Retest
	Diatek Board & Harness	Verify All Connections To The Temperature Board.
	Opto-Reflector	Verify Probe Is Seen Only When Removed From Holster.
	Connector PCB	Verify That The Temp Probe Connector Is Properly Seated In The Connector On The Unit. Verify That The Connector From Diatek
		Board Is Connected To The Connector
	Temp. Error Code	See Page 19
Printer Failure		
	To Printer PCB)	Verify That The Flex Cable From The Main PCB Is Fully Seated In The Board Cable Connectors.
	Flex Cable (Printer	
	To Printer PCB)	Verify That The Flex Cable From The Printer To The Printer PCB Is Fully Seated In The Board Cable Connector.
	Paper Jam	Check Condition Of Paper Roll In The Printer Housing.
	Printer Home Position	Verify That The Printer Head Fully Actuates The Printer Home Switch.
BP Readings High		See pages 17 & 18 for ways to check to ensure the monitor is accurate.

CHECKLIST FOR COMPARING AUTOMATED BP MONITORING TO MANUAL METHODS

- Blood pressure can vary between the left and right arm by as much as 20 mmHg on some patients. When comparing the Welch Allyn measurement to a manual reading on an opposite arm it is important to repeat the comparison after switching arms and then compare the average of both readings. This will help to eliminate the difference between the two arms.
- A person's blood pressure is continuously changing in reaction to their environment and physical state. Posture changes, conversation and other influences can easily cause a person's blood pressure to change dramatically. When comparing the Welch Allyn measurement to a subsequent manual reading on the same arm it is important to enure that the person's blood pressure has stabilized. To determine this, it is best to take a manual reading before and after the Welch Allyn reading. A stable subject should not have a change in systolic or diastolic of more than 5 mmHg.
- It is very important that both of the subject's arm remain in the same relative location throughout the test. One inch of elevation change will result in 1.8 mmHg change in the systolic and diastolic pressures.
- When taking the manual auscultatory reading it is very important to maintain a 3 mmHg/sec deflation rate. This deflation has been prescribed by the American Heart Association. Deflating the cuff too rapidly will result in an inaccurate blood pressure reading.
- Hearing acuity vary from individual to individual an can cause different blood pressure measurements on the same subject. This effect is compounded when a subject has very weak Korotkoff sounds. When taking auscultatory readings for comparison to the Welch Allyn, it is best to use a teaching stethoscope with two sets of binaurals and two persons trained in taking blood pressures. The two observers should write down their readings and not reveal the readings to each other, which may introduce bias. The two observers should agree within 5 mmHg for both systolic and diastolic, and the average of their readings used for the comparison. Inability of the two observers to agree within 5 mmHg denotes a subject which cannot be repeatedly measured by auscultation and should not be used for comparison.
- Proper cuff sizing is important. Using a cuff that is too small or too large will result in inaccurate blood pressure readings.
- Some situations can introduce a psychological bias in the auscultatory readings. For instance, a drug testing clinic wishing for subjects with systolic pressure below an acceptance threshold may result in biased low systolic readings, in some instances.

CHECKLIST FOR COMPARING BP MEASUREMENTS MADE WITH THE WELCH ALLYN TO OTHER AUTOMATED MONITORS

- The Welch Allyn monitor has been validated according to the AAMI protocol using auscultatory readings. Many other manufacturer's monitors have been validated to the AAMI protocol *intra-arterial* blood pressure readings. Intra-arterial blood pressure readings do not necessarily agree with auscultatory readings. In fact, it is common for the diastolic pressure determined intra-arterially to be 7-10 mmHg lower than an auscultatory reading.
- Blood pressure can vary between the left and right arm by as much as 20 mmHg on some patients. When comparing the Welch Allyn measurement to a manual reading on an opposite arm it is important to repeat the comparison after switching arms and then compare the average of both readings. This will help to eliminate the difference between the two arms.
- A person's blood pressure is continuously changing in reaction to their environment and physical state. Posture changes, conversation and other influences can easily cause a person's blood pressure to change dramatically. When comparing the Welch Allyn measurement to a subsequent manual reading on the same arm it is important to enure that the person's blood pressure has stabilized. To determine this, it is best to take a manual reading before and after the Welch Allyn reading. A stable subject should not have a change in systolic or diastolic of more than 5 mmHg.
- It is very important that both of the subject's arm remain in the same relative location throughout the test. One inch of elevation change will result in 1.8 mmHg change in the systolic and diastolic pressures.
- Proper cuff sizing is important. Using a cuff that is too small or too large will result in inaccurate blood pressure readings.
TEMPERATURE ERROR CODE CORRECTION

- 1. Turn the unit off.
- 2. Hold down the "Start" button as you turn the unit back on. Continue to hold down the "Start" button until the alarm signals dissipate.
- 3. Make sure that you see either a "2.4" or a "24" in the temperature window.
- 4. Press the "Review" button and you should see "CAL" in the systolic window.
- 5. Press the "Review" button again and you should see "BAT" in the systolic window.
- 6. Press the "Review" button again and make sure that three dashes (---) appear in the temperature window.
- 7. Once this has been confirmed, press the "Review" button until you see "2.4" or "24" in the temperature window. Make sure the probe is in the housing.
- 8. Turn the unit off, then turn the unit on allowing it to boot up into its normal mode.
- 9. Allow the "PC" to disappear from the temperature window.
- 10. Remove the probe from the housing. You should see a "1888" then "ORL" appear. If not, contact your local service department.

CLINICAL VITAL SIGNS MONITOR OPERATOR MANUAL				
3.7 TROUBLE SHOOTING GUIDE				
Symptom	Possible Cause	Explanations and		
		Corrective Action		
1. Inaccurate Blood Pressure Readings	Incorrect Cuff Size	Determine correct cuff size: • use reference markings on cuff • measure patient's arm circumference midway between elbow and shoulder (see page 42 of Operator's Manual to select correct cuff size).		
	Patient's Arm Position	Ensure Patient's arm is at heart level.		
Please note: Differences '10mmhg should be considered 'normal and will occur for a number of reasons including intrapatient BP variability, observer hearing differences, and auscultatory deflation rate.	Arm Movement During blood pressure cycle	Keep arm still during blood pressure cycle: • movement may cause inaccuracies from artifact		
	Blood Pressure taken over clothing	Blood Pressure should be taken on a bare arm.		
	Arrhythmia	Check for regularity of heart rate: (palpate pulse or check monitor) • moderate to severe heart rate irregularities may make blood pressure difficult to measure.		
	Incorrect Reference	 Use 4th Korotkoff sound to determine diastolic blood pressure. Many listener's incorrectly equate diastolic blood pressure with the disappearance of sound. The Vital Signs Monitor was developed using the 4th sound, as recommended by the American Heart Association. 		
	Change in blood pressure from auscultatory reading to Vital Signs Monitor reading	Deflate cuff no faster than 3mmhg per second: • One of the major sources of error in ausculta- tory blood pressure measurement is deflating the cuff to quickly. The American Heart Association recommends deflation no faster than 3mmhg per second.		
		 Only use a spygnomometer that is known to be in calibration: Blood pressure taken with un-calibrated sphygmomanometer may be very inaccurate. 		
		Check blood pressure immediately prior to Vital Signs Monitor Reading		
	Poor auscultatory sound recognition by observer	Use higher quality stethoscope Have a different observer check patient's blood pressure		

	J. TROOBLE SHOOTI	
Sympton	Possible Cause	Explanations and
		Corrective Action
2. Cuff Inflation & Deflation With No Blood Pressure Reading Displayed. (or error code in display)	Leak in pneumatic system	Make sure all cuff attachments are tight. Carefully check for tubing leaks on blood pressure cuff and tubing attachment to monitor.
	Arm Movement During Cycle Tubing Movement Artifact	 Keep arm still during blood pressure cycle: movement may cause inaccuracies from artifact. Do not contact tubing during blood pressure cycle movement may cause inaccuracies from artifact.
3. No Cuff Inflation	Connections from monitor to cuff loose	Check all connections. (Do not over tighten).
4. Temperature Malfunction	Broken Probe	Replace Probe
		Consult Technical Manual
Error code displayed		Notify Biomedical department or Welch Allyn Customer Service (800) 854-2904
		Wait for display window to read ORL before placing probe
• Low Temperature Readings	Improper Probe Placement	Place probe in most posterior sublingual pocket Notify biomedical or Welch Allyn Customer Service.
No Temperature Displayed	Probe not Replaced	Replace probe in holder prior to taking another temperature.
 5. SPO2 Malfunction Sensor in place but no SPO2 on display 	Improperly attached sensor	insert the patient's finger completely into sensor
	Cable incorrectly plugged into monitor	Be sure sensor cable is correctly plugged into monitor
Inaccurate SPO2 Reading	SPO2 disabled Incorrect Sensor	Be sure SPO2 is enabled with Mode button - (SPO2 light will be off when disabled) Assure that correct manufacturers sensor is in use - they are not interchangeable
		-

3.7 TROUBLE SHOOTING GUIDE

Sympton Possible Cause Explanations and			
		Corrective Action	
6. Printer Malfunction	Paper will not advance	Consult Technical Manual Notify Biomedical or Welch Allyn Customer Service.	
7. Monitor Will Not Power Up	Low Battery	Check connections between monitor and transformer and wall receptacle.	
	Monitor not plugged in	Unplug unit from wall receptacle and check for breaks in cord. if connections secure and power supply is intact.	
		Notify Biomedical Department or Welch Allyn Customer Service.	
8. Cuff Too Tight (over inflation)	Pressure Preset too high	Check pressure preset setting: • Unless patient has underlying systolic hyper- tension, set pressure preset at 160mmhg. (If Systolic blood pressure is greater than 'pressure preset, monitor will automatically 'increase an additional 40mmhg).	
9. Cuff Popping Off	Inappropriate size cuff	Determine cuff size with the cuff markings or refer to chart in Operator's Manual for determining cuff size. • If cuff continues to pop off, notify Biomedical Department or Welch Allyn Customer Service.	
	Cuff applied inside out	Re apply cuff: • make sure smooth surface of velcro is facing patients arm	
10. Cuff Deflating Too Slowly	Normal Operation	Deflate cuff no faster than 3mmhg per second: • One of the major sources of error in ausculta- tory blood pressure measurement is deflating the cuff too quickly. The American Heart Association recommends deflation no faster than 3mmhg per second.	
	Pressure Preset too high	Check pressure preset setting	

3.7 TROUBLE SHOOTING GUIDE

SECTION 4:

Major Component Removal

4.1 Front Housing

ABSTRACT:

- 4.1 Opening up the *front housing* is necessary when replacing the main fuse. Complete removal of the front housing is necessary to replace the main printed circuit board (PCB), display board, switch pad and other components.
- 4.1.1 Preparing the unit for disassembly.
 - _ **Turn** unit off and **disconnect** AC power cord from the unit.
 - ____ **Disconnect** all accessories from the unit.
 - ____ If the unit is pole mounted, **remove** unit from the pole.
 - If the unit is wall mounted, **remove** unit from the wall.
 - ____ If the unit is free standing, **turn** the back towards you.
- 4.1.2 Battery cover removal.
 - Remove four (4) Phillips head screws from the battery door. Use
 - T112918 with the #4 Phillips bit.
 - ___ Remove battery door.
- 4.1.3 Battery removal from battery compartment.
 - **Remove** the battery out of the compartment by turning the unit upside down and shaking until battery begins to slide out.
 - ___ **Disconnect** the two (2) connectors.
 - ___ (If the battery is to be discarded, **comply** with all environmental regulations pertaining to battery disposal.)
- 4.1.4 Opening front housing.
 - **Position** unit so the front panel is facing down.
 - ____ **Remove** six (6) Phillips screws with T112918 and the #6 Phillips bit.
 - ___ Carefully separate the front and rear housings.
- 4.1.5 Disconnection of connectors.
 - ___ Disconnect two (2) four-pin connectors (red) from top of main board to relieve strain.
 - _ Unplug main 14-pin connector (red) from center of main PCB.
 - **Disconnect** pressure line (1/16" tubing) from transducer.
 - ____ **Disconnect** the printer flex circuit from the main board.
 - ___ **Disconnect** 7-pin connector coming from the temperature connector PCB to the temperature PCB.
 - ___ **Disconnect** the green wire 2-pin connector from the main board.
 - Note the orientation of the green wire. It is towards the center of the main PCB, or away from the temperature board.
 - **Disconnect** the temperature connector plug from the temperature PCB.
 - Remove the main PCB by removing the 7 torx screws with T112917 and the torx t8 bit. Disconnect the flex cable that connects to the display PCB. Remove the main PCB.
 - ___ **Remove** the 7 gray spacers.
 - ____ **Remove** the display PCB from front housing.

The front housing is now free.

Replace the front housing by assembling in reverse order following these special instructions.

- 4.1.6 Reconnecting the connectors.
 - **Reconnect** the green wire 2-pin connector to the two male pins on the main board with the wire contact (away from) the temperature board.
 - **Carefully** align all other connectors and flex circuits in mating connectors.

Reassemble in reverse order. No special techniques required.

- 4.1.7 Verification of repair.
 - **Switch** the unit to 'on' and **perform** a full functional check.

4.2 Main Fuse f-1

ABSTRACT:

4.2 Removing and replacing the *main fuse f1. (t5ah* 250v) pn114s586.

One possible cause of failure to 'power up' is an open fuse (blown fuse). Before replacing the fuse with a good one, troubleshoot the unit for an existing short circuit or high current drain. Follow the procedure as shown below.

The front housing only has to be pulled away slightly from the rear housing to allow your fingers to reach the main fuse.

- 4.2.1 Preparing the unit for disassembly.
 - _ **Turn** unit off and **disconnect** AC power cord from the unit.
 - ___ **Disconnect** all accessories from the unit.
 - ____ If the unit is pole mounted, remove unit from the pole.
 - ____ If the unit is wall mounted, **remove** unit from the wall.
 - ____ If the unit is free standing, **turn** the back towards you.
- 4.2.2 Battery cover removal.
 - ____ **Remove** four (4) Phillips head screws from the battery door.
 - Use T112918 with the #4 Phillips bit.
 - _ Remove battery door.
- 4.2.3 Battery removal from battery compartment.
 - **Remove** the battery out of the compartment by turning the unit upside down and shaking until battery begins to slide out.
 - ___ **Disconnect** the two (2) connectors.
 - ____ (If the battery is to be discarded, **comply** with all environmental regulations pertaining to battery disposal.)
- 4.2.4 Opening Front Housing
 - **Position** unit so the front panel is facing down.
 - **Remove** six (6) Phillips screws with T112918 with the #6 Phillips bit.
 - ___ Carefully separate the front and rear housings.
- 4.2.5 Gaining access to fuse F1.
 - _ **Open** 4 unit far enough to gain access to the fuse.
 - **Disconnect** the top two red connectors to make opening easier.
 - **Do not force** the housings apart as this could damage components, board, wires or connectors.
 - ____ **Insert** plastic trimmer adjustment tool under fuse and pry fuse out of holder. (use a trimmer adjustment screwdriver or equivalent or any insulated tool that will fit between the fuse holder body and the fuse body enabling you to pry the fuse out of the holder.
 - ____ Verify that the fuse you removed was in fact open. Check with dvm.
 - ____ If fuse is open (blown), **troubleshoot** to determine cause of the overcurrent condition. **See** item 4.2.6 below.
 - _____ If fuse is closed (good), troubleshoot to determine other causes of failure of unit to 'power up'.

- 4.2.6 General procedure for testing for short circuit.
 - **Remove** battery from unit. (this should have been done)
 - ____ **Remove** blown fuse from main PCB.
 - ____ Attach jumper wires between two sides of fuse block.
 - **Connect** ohmmeter to red and black power input wires inside of the battery compartment.
 - ____ Resistance should not be less than infinity or ol (open leads).
 - ____ In case of dead short, **continue** to troubleshoot for short condition.
- 4.2.7 Installing fuse f1.
 - **Press** replacement fuse service part 114s586 securely into fuse holder.
 - ___ **Reconnect** any plugs which were unplugged to gain access to the fuse block.

Reassemble in reverse order, no special techniques required.

- 4.2.8 Verification of repair.
 - **Switch** the unit to 'on' and **perform** a full functional check.

4.3 Main Printed Circuit Board (main PCB)

ABSTRACT:

- 4.3 Removing and replacing the <u>main PCB</u> requires that you remove the battery, split the cases, unplug one pneumatic line and electrical connectors. The small temperature board will be removed in the process. It can be swapped over to the replacement main PCB. It is held on by two of the seven torx fasteners.
- 4.3.1 Preparing the unit for disassembly.
 - **Turn** unit off and **disconnect** AC power cord from the unit.
 - ____ **Disconnect** all accessories from the unit.
 - ____ If the unit is pole mounted, remove unit from the pole.
 - _____ If the unit is wall mounted, **remove** unit from the wall.
 - If the unit is free standing, **turn** the back towards you.
- 4.3.2 Battery cover removal.
 - **Remove** four (4) Phillips head screws from the battery door.
 - Use T112918 with the #4 Phillips bit.
 - ___ Remove battery door.
- 4.3.3 Battery removal from battery compartment.
 - **Remove** the battery out of the compartment by turning the unit upside down and shaking until battery begins to slide out.
 - **Disconnect** the two (2) connectors.
 - ____ (If the battery is to be discarded, **comply** with all environmental regulations pertaining to battery disposal.)
- 4.3.4 Opening front housing.
 - **Position** unit so the front panel is facing down.
 - ____ **Remove** six (6) Phillips screws with T112918 and the #6 Phillips bit.
 - ___ Carefully separate the front and rear housings.
- 4.3.5 Note the orientation of the green wire. It is towards the center of the main PCB, or away from the temperature board.

- 4.3.6 Removal of temperature board from main PCB.
 - _ **Unscrew** two torx fasteners with T112917 with the torx t8 bit and lift the temperature board up and set it aside.
- 4.3.7 Separating the main PCB from the display PCB.
 - _ **Unplug** the main PCB to display PCB flex circuit.
 - **Remove** five (5) remaining torx fasteners with T112917 with the torx t8 bit and lift the main PCB out of the front housing. Watch for the 7 gray spacers.

Reassemble in reverse order with attention to the following details

- 4.3.8 Attaching the temperature board to the main PCB.
 - Make sure all of the seven (7) gray plastic board spacers are in place before placing the main PCB over the display PCB.
 - ____ **Insert** and tighten five of the last fasteners that were removed.
 - ____ Place the temperature board onto the main PCB and secure it with two torx fasteners.
- 4.3.9 **Reconnect** the temperature board connector to the main PCB socket.

Reassemble in reverse order

- 4.3.10 Verification of repair.
 - ___ When completely assembled, switch the unit to 'on' and perform a full functional check, including recalibration.

4.4 DC to DC Converter (SpO₂ Units Only)

ABSTRACT:

- 4.4 To replace the *DC to DC converter*, it is necessary to remove the main PCB.
- 4.4.1 Preparing the unit for disassembly.
 - **Turn** unit off and **disconnect** AC power cord from the unit.
 - ___ **Disconnect** all accessories from the unit.
 - _____ If the unit is pole mounted, remove unit from the pole.
 - _____ If the unit is wall mounted, **remove** unit from the wall.
 - ____ If the unit is free standing, **turn** the back towards you.
- 4.4.2 Battery cover removal.
 - _ **Remove** four (4) Phillips head screws from the battery door.
 - Use T112918 with the #4 Phillips bit.
 - ___ Remove battery door.
- 4.4.3 Battery removal from battery compartment.
 - **Remove** the battery out of the compartment by turning the unit upside down and shaking until battery begins to slide out.
 - **Disconnect** the two (2) connectors.
 - ____ (If the battery is to be discarded, **comply** with all environmental regulations pertaining to battery disposal.)
- 4.4.4 Opening front housing.
 - **Position** unit so the front panel is facing down.
 - ____ Remove six (6) Phillips screws with T112918 and the #6 Phillips bit.
 - **Carefully separate** the front and rear housings.
- 4.4.5 Disconnection of connectors.
 - ___ **Disconnect** two (2) four-pin connectors (red) from top of main board to relieve strain.
 - **Unplug** main 14-pin connector (red) from center of main PCB.
 - **Disconnect** pressure line (1/16" tubing) from transducer.
 - ____ **Disconnect** the printer flex circuit from the main board.
 - **Disconnect** 7-pin connector coming from the temperature connector PCB to the temperature PCB.
 - ____ **Disconnect** the green wire 2-pin connector from the main board. Note the orientation of the green wire. It is towards the center of the main PCB, or away from the temperature board.

- 4.4.6 Separating the main PCB from the display PCB.
 - ___ **Unplug** the main PCB to display PCB flex circuit.
 - **Remove** seven (7) torx fasteners with T112917 with the torx t8 bit and lift the main PCB and the temperature PCB out of the front housing.
- 4.4.7 Replacing the DC to DC converter from the main PCB.
 - ___ **Peel** off the rtv surrounding the old converter.
 - ___ **De-solder** the old converter.
 - ___ Clear the 8 holes out with a thru-hole solder sucker.
 - ___ **Install** a replacement converter as per figure 4.4.7 below.
 - **____ Secure** with rtv (innerbond i-45) on all four sides.

Reassemble in reverse order, no special techniques required.

- 4.4.8 Verification of repair.
 - When completely assembled, switch the unit to on and do a full functional check, including calibration.

4.5 Pressure Transducer On Main PCB

ABSTRACT:

- 4.5 To replace the *pressure transducer* on the main PCB, it is necessary to remove the main PCB.
- 4.5.1 Preparing the unit for disassembly.
 - ____ **Turn** unit off and **disconnect** AC power cord from the unit.
 - ____ **Disconnect** all accessories from the unit.
 - _____ If the unit is pole mounted, remove unit from the pole.
 - ____ If the unit is wall mounted, **remove** unit from the wall.
 - ____ If the unit is free standing, **turn** the back towards you.
- 4.5.2 Battery cover removal.
 - **Remove** four (4) Phillips head screws from the battery door.
 - Use T112918 with the #4 Phillips bit.
 - ___ Remove battery door.
- 4.5.3 Battery removal from battery compartment.
 - **Remove** the battery out of the compartment by turning the unit upside down and shaking until battery begins to slide out.
 - ___ **Disconnect** the two (2) connectors.
 - ___ (If the battery is to be discarded, **comply** with all environmental regulations pertaining to battery disposal.)
- 4.5.4 Opening front housing.
 - **Position** unit so the front panel is facing down.
 - ___ Remove six (6) Phillips screws with T112918 and the #6 Phillips bit.
 - **Carefully separate** the front and rear housings.
- 4.5.5 Disconnection of connectors.
 - **Disconnect** two (2) four-pin connectors (red) from top of main board to relieve strain.
 - ____ **Unplug** main 14-pin connector (red) from center of main PCB.
 - **Disconnect** pressure line (1/16" tubing) from transducer.
 - ____ **Disconnect** the printer flex circuit from the main board.
 - **Disconnect** 7-pin connector coming from the temperature connector PCB to the temperature PCB.
 - ___ **Disconnect** the green wire 2-pin connector from the main board.
 - Note the orientation of the green wire. It is towards the center of the main PCB, or away from the temperature board.

- 4.5.6 Separating the main PCB from the display PCB.
 - _ **Unplug** the main PCB to display PCB flex circuit.
 - ____ **Remove** seven (7) torx fasteners with T112918 with the torx t8 bit and lift the main PCB and the temperature PCB out of the front housing.
 - ___ **Do not lose** the 7 gray spacers.

- 4.5.7 Replacing the pressure transducer on the main PCB.
 - ____ De-solder the old transducer.
 - ___ Clear the 6 holes out with a thru-hole solder sucker.
 - **Install** a replacement pressure transducer per figure 4.5.7 below.

Reassemble in reverse order, no special techniques required.

- 4.5.8 Verification of repair.
 - _ When completely assembled, switch the unit to 'on' and perform a full functional check, including recalibration.

4.6 Display Printed Circuit Board (Display PCB)

ABSTRACT:

- 4.6 Removing and replacing the *display PCB* requires that you remove the battery, split the cases, unplug one pneumatic line and electrical connectors, remove the temperature PCB and main PCB.
- 4.6.1 Preparing the unit for disassembly.
 - **Turn** unit off and **disconnect** AC power cord from the unit.
 - ___ **Disconnect** all accessories from the unit.
 - If the unit is pole mounted, remove unit from the pole.
 - If the unit is wall mounted, **remove** unit from the wall.
 - ____ If the unit is free standing, **turn** the back towards you.
- 4.6.2 Battery cover removal.
 - **Remove** four (4) Phillips head screws from the battery door.
 - Use T112918 with the #4 Phillips bit.
 - ___ Remove battery door.
- 4.6.3 Battery removal from battery compartment.
 - **Remove** the battery out of the compartment by turning the unit upside down and shaking until battery begins to slide out.
 - ___ **Disconnect** the two (2) connectors.
 - (If the battery is to be discarded, **comply** with all environmental regulations pertaining to battery disposal.)
- 4.6.4 Opening front housing.
 - **Position** unit so the front panel is facing down.
 - _ Remove six (6) Phillips screws with T112918 and the #6 Phillips bit.
 - **Carefully separate** the front and rear housings.
- 4.6.5 Disconnection of connectors.
 - ___ **Disconnect** two (2) four-pin connectors (red) from top of main board to relieve strain.
 - ___ Unplug main 14-pin connector (red) from center of main PCB.
 - **Disconnect** pressure line (1/16" tubing) from transducer.
 - ____ **Disconnect** the printer flex circuit from the main board.
 - ____ **Disconnect** 7-pin connector coming from the temperature connector PCB to the temperature PCB.
 - ____ **Disconnect** the green wire 2-pin connector from the main board. Note the orientation of the green wire. It is towards the center of
 - the main PCB, or away from the temperature board.

- 4.6.6 Separating the main PCB from the display PCB.
 - ____ **Unplug** the main PCB to display PCB flex circuit.
 - **Remove** seven (7) torx fasteners with T112918 torx t8 bit and lift the main PCB and the temperature PCB out of the front housing.
 - ___ **Remove** the seven (7) gray board spacers as they will be reused.
- 4.6.7 Removing the display PCB from the front housing.
 - ____ Gently **lift** the display board out of the front housing. Be careful not to damage the exposed LED's.

Reassemble in reverse order with attention to the following details.

- 4.6.8 Place display PCB into front housing.
 - **____ Seat** the display PCB over screw bosses.
 - Place 7 spacers over front housing bosses projecting through PCB and seat them securely against the surface of the PCB.
- 4.6.9 Attaching main PCB to the display PCB and front housing.
 - ___ **Use** all seven gray spacers to prevent damage to the boards.
 - Gently lay the main PCB onto the spacers (component side up) so that all of the holes line up.
 - ____ Insert and tighten five (5) torx fasteners with T112917 with the torx t8 bit.
- 4.6.10 Attaching the temperature board (option).
 - ____ Align the temperature board so that the component side faces towards the center of the unit.

Continue reassembly in reverse order of disassembly.

- 4.6.11 Verification of repair.
 - ___ When completely assembled, switch the unit to 'on' and perform a full functional check, including recalibration.

4.7 Key Pad (Switch Array)

ABSTRACT:

- 4.7 Removing and replacing the *key pad* requires that you remove the battery, split the cases, unplug one pneumatic line and electrical connectors, and remove the main and display PCB's from the front housing. If the key pad is being removed for suspected moisture or contamination, replace it with a new one once the PCB is cleaned.
- 4.7.1 Preparing the unit for disassembly.
 - _ **Turn** unit off and **disconnect** AC power cord from the unit.
 - ____ **Disconnect** all accessories from the unit.
 - _____ If the unit is pole mounted, remove unit from the pole.
 - ____ If the unit is wall mounted, **remove** unit from the wall.
 - ____ If the unit is free standing, **turn** the back towards you.
- 4.7.2 Battery cover removal.
 - **Remove** four (4) Phillips head screws from the battery door.
 - Use T112918 with the #4 Phillips bit.
 - ___ Remove battery door.
- 4.7.3 Battery removal from battery compartment.
 - ___ **Remove** the battery out of the compartment by turning the unit upside down and shaking until battery begins to slide out.
 - ___ **Disconnect** the two (2) connectors.
 - (If the battery is to be discarded, **comply** with all environmental regulations pertaining to battery disposal.)
- 4.7.4 Opening front housing.
 - **Position** unit so the front panel is facing down.
 - **Remove** six (6) Phillips screws with T112918 and the #6 Phillips bit.
 - ___ Carefully separate the front and rear housings.
- 4.7.5 Disconnection of connectors.
 - **Disconnect** two (2) four-pin connectors (red) from top of main board to relieve strain.
 - ____ Unplug main 14-pin connector (red) from center of main PCB.
 - **Disconnect** pressure line (1/16" tubing) from transducer.
 - **Disconnect** the printer flex circuit from the main board.
 - ____ **Disconnect** 7-pin connector coming from the temperature connector PCB to the temperature PCB.
 - ____ **Disconnect** the green wire 2-pin connector from the main board. Note the orientation of the green wire. It is towards the center of the main PCB, or away from the temperature board.

- 4.7.6 Separating the main PCB from the display PCB.
 - _ **Unplug** the main PCB to display PCB flex circuit.
 - **Remove** all seven (7) torx fasteners with T112918 with the torx t8 bit and lift the main PCB and temperature PCB out of the front housing.
 - ____ Remove the seven (7) gray board spacers as they will be reused.

- 4.7.7 Removing the display PCB from the front housing.
 - Gently lift the display board out of the front housing.
 Be careful not to damage the exposed led's.
- 4.7.8 Removing the key pad.
 - ____ Gently **peel** the old key pad away from the PCB.
 - ____ **Inspect** the PCB for contamination and clean accordingly with alcohol. Allow the alcohol to evaporate for one minute then blow off lint. From this point on, do not touch contact surfaces.

Reassemble in reverse order with attention to the following details.

- 4.7.9 Attach new key pad to the display PCB..
 - Lay flexible key pad over PCB and exactly align protrusions over holes in PCB.
 - **Press** protrusions into holes with tool T-112067. Be careful not to tear keypad.
- 4.7.10 Place display PCB into front housing.
 - ____ Seat the display PCB over screw bosses.
 - Place 7 spacers over front housing bosses projecting through PCB and seat them securely against the surface of the PCB.
- 4.7.11 Attaching main PCB to the display PCB and front housing.
 - ____ **Use** all seven gray spacers to prevent damage to the boards.
 - Gently lay the main PCB onto the spacers (component side up) so that all of the holes line up.
 Insert and tighten torx fasteners with T112917 with the torx t8 bit.
- 4.7.12 Attaching the temperature board (option).
 - ____ Align the temperature board so that the component side faces towards the center of the unit.

Continue reassembly in reverse order of disassembly.

- 4.7.13 Verification of repair.
 - When completely assembled, switch the unit to 'on' and perform a full functional check, including recalibration.

4.8 Temperature PCB

ABSTRACT:

- 4.8 Removing and replacing the <u>temperature PCB</u> requires that you remove the battery, split the cases, unplug one pneumatic line and electrical connectors. The small temperature board can be removed by unscrewing two Phillips head screws which hold the board to the two small "I" brackets. it is not necessary to remove the brackets from the main PCB.
- 4.8.1 Preparing the unit for disassembly.
 - _ **Turn** unit off and **disconnect** AC power cord from the unit.
 - ____ **Disconnect** all accessories from the unit.
 - _____ If the unit is pole mounted, remove unit from the pole.
 - ____ If the unit is wall mounted, **remove** unit from the wall.
 - ____ If the unit is free standing, **turn** the back towards you.
- 4.8.2 Battery cover removal.
 - Remove four (4) Phillips head screws from the battery door.
 Use T112918 with the #4 Phillips bit.
 - _ **Remove** battery door.
- 4.8.3 Battery removal from battery compartment.
 - **Remove** the battery out of the compartment by turning the unit upside down and shaking until battery begins to slide out.
 - ___ **Disconnect** the two (2) connectors.
 - ____ (If the battery is to be discarded, **comply** with all environmental regulations pertaining to battery disposal.)
- 4.8.4 Opening front housing.
 - **Position** unit so the front panel is facing down.
 - **Remove** six (6) Phillips screws with T112918 and the #6 Phillips bit.
 - ___ **Carefully separate** the front and rear housings.
- 4.8.5 Disconnection of connectors.
 - **Disconnect** two (2) four-pin connectors (red) from top of main board to relieve strain.
 - ____ Unplug main 14-pin connector (red) from center of main PCB.
 - ____ **Disconnect** pressure line (1/16" tubing) from transducer.
 - **Disconnect** the printer flex circuit from the main board.
 - ____ **Disconnect** 7-pin connector coming from the temperature connector PCB to the temperature PCB.
 - Disconnect the green wire 2-pin connector from the main board. Note the orientation of the green wire. It is towards the center of the main PCB, or away from the temperature board.

- 4.8.6 Removal of temperature board from "I" brackets on the main PCB.
 - _ Disconnect connector from main board socket.
 - **Disconnect** the temperature connector cable from the temperature PCB.
 - _ **Unscrew** two torx fasteners with T112917 with the torx t8 bit and lift the temperature board up.

The temperature board is now free from the main PCB.

Reassemble in reverse order with attention to the following details.

- 4.8.7 Attaching the temperature board when main PCB was not removed..
 - ___ Place a spacer on each Phillips head screw.
 - __ Insert screw through board
 - ___ Place another spacer on each screw
 - ____ **Thread** screw into "I" bracket part way.
 - ____ Apply Locktite 222 on the end of the screw and thread all the way into the bracket.
- 4.8.8 **Reconnect** the temperature connector to main PCB socket. **Reconnect** the temperature connector cable to the temperature PCB.

Reassemble in reverse order

- 4.8.9 Verification of repair.
 - __ When completely assembled, switch the unit to 'on' and perform a full functional check of the temperature function.

4.9 Specific Oxygen Board (NONIN SpO₂ PCB)

ABSTRACT:

- 4.9 Removing and replacing the <u>Nonin SpO₂ PCB</u> requires that you remove the battery, and remove the front housing.
- 4.9.1 Preparing the unit for disassembly.
 - **Turn** unit off and **disconnect** AC power cord from the unit.
 - _ **Disconnect** all accessories from the unit.
 - ____ If the unit is pole mounted, remove unit from the pole.
 - _____ If the unit is wall mounted, **remove** unit from the wall.
 - ____ If the unit is free standing, **turn** the back towards you.
- 4.9.2 Battery cover removal.
 - ____ Remove four (4) Phillips head screws from the battery door.
 - Use T112918 with the #4 Phillips bit.
 - _ **Remove** battery door.
- 4.9.3 Battery removal from battery compartment.
 - **Remove** the battery out of the compartment by turning the unit upside down and shaking until battery begins to slide out.
 - **Disconnect** the two (2) connectors.
 - (If the battery is to be discarded, **comply** with all environmental regulations pertaining to battery disposal.)
- 4.9.4 Opening front housing.
 - **Position** unit so the front panel is facing down.
 - _ Remove six (6) Phillips screws with T112918 and the #6 Phillips bit.
 - **Carefully separate** the front and rear housings.
- 4.9.5 Disconnection of connectors.
 - ___ **Disconnect** two (2) four-pin connectors (red) from top of main board to relieve strain.
 - ___ Unplug main 14-pin connector (red) from center of main PCB.
 - **Disconnect** pressure line (1/16" tubing) from transducer.
 - ____ **Disconnect** the printer flex circuit from the main board.
 - ____ **Disconnect** 7-pin connector coming from the temperature connector PCB to the temperature PCB.
 - Disconnect the green wire 2-pin connector from the main board. Note the orientation of the green wire. It is towards the center of the main PCB, or away from the temperature board.

- 4.9.6 Removing the Nonin SpO₂ PCB.
 - ____ **Turn** unit on its back and unscrew two torx screws from the board. Use T112917 with the torx t8 bit.
 - ___ **Disconnect** tube from bottom of valve.
 - ___ Disconnect tube from pressure outlet fitting.
 - ____ Slide board out of well.

4.9.7 Remove wires from board.

- ___ **Remove** rtv from the back side of seven wire solder connections shown below in figure 4.9.7
- ___ **Unsolder** wires from board as per figure 4.9.7 below.
- ____ **Remove** solder from wires to prepare for new board.

4.9.8 Checking wire connections by pin-out process.

Each wire will terminate at a specific pin position on the SpO₂ jack. Therefore, **reconfirm** that all connections are correct by pinning out your work. Use figure 4.9.8 to verify connections.

4.9.9 Replacing the SpO_2 board.

- ___ Connect wires to locations as shown above.
- **Cover** bottoms of connections with 376e108 (G.E. gray rtv #167, electronic adhesive sealant)

Reassemble in reverse order of disassembly.

4.9.10 Verification of repair.

When completely assembled, switch the unit to 'on' and perform a full functional check of the SpO_2 function.

4.10 Specific Oxygen Board (NELLCOR SpO₂ PCB)

ABSTRACT:

- 4.10 Removing and replacing the <u>Nellcor SpO</u>₂ <u>PCB</u> requires that you remove the battery, and remove the front housing.
- 4.10.1 Preparing the unit for disassembly.
 - ____ **Turn** unit off and **disconnect** AC power cord from the unit.
 - _ **Disconnect** all accessories from the unit.
 - ____ If the unit is pole-mounted, **remove** unit from the pole.
 - If the unit is wall-mounted, **remove** unit from the wall.
 - ____ If the unit is free-standing, **turn** the back towards you.
- 4.10.2 Battery cover removal.
 - _ Remove four (4) Phillips head screws from the battery door.
 - Use T112918 with the #4 Phillips bit.
 - _ Remove battery door.
- 4.10.3 Battery removal from battery compartment.
 - **Remove** the battery out of the compartment by turning the unit upside down and shaking until battery begins to slide out.
 - ___ **Disconnect** the two (2) connectors.
 - (If the battery is to be discarded, **comply** with all environmental regulations pertaining to battery disposal.)
- 4.10.4 Opening front housing.
 - **Position** unit so the front panel is facing down.
 - _ Remove six (6) Phillips screws with T112918 and the #6 Phillips bit.
 - _ Carefully separate the front and rear housings.
- 4.10.5 Disconnection of connectors.
 - **Disconnect** one (1) four-pin connector and one (1) seven-pin connector from top of main board to relieve strain.
 - ___ **Unplug** main 14-pin connector (red) from center of main PCB.
 - **Disconnect** pressure line (1/16" tubing) from transducer.
 - **Disconnect** 7-pin connector coming from the temperature connector PCB to the temperature PCB.
 - Disconnect the green wire 2-pin connector from the main board. Note the orientation of the green wire. It is towards the center of the main PCB, or away from the temperature board.

- 4.10.6 Removing the Nellcor SpO₂ PCB.
 - ____ **Turn** unit on its back and unscrew two torx screws from the board and lift blue wire. Use T112917 with the torx T8 bit.
 - ___ **Disconnect** tube from bottom of valve.
 - Disconnect tube from pressure outlet fitting.
 - ____ **Remove** two (2) screws from valve and lift valve.
 - Use T112917 with the torx T8 bit.
 - _ Lift Nellcor SpO₂ PCB from well.

- 4.10.7 Removing wires from board
 - ____ **Unplug** the connector for the main PCB terminator by using a flat head screw driver and gently pry upwards on the connector.
 - ____ **Unplug** the connector for the outside interface by simply pulling back on the connector.

The SpO, PCB has been removed from the rear housing.

- 4.10.8 Replacing the SpO₂ PCB
 - Connect the main PCB terminator cable connector to its proper port on the Nellcor SpO₂ PCB.
 - **Connect** the outside interface cable connector to its proper port on the Nellcor SpO₂ PCB.

Reassemble in reverse order of disassembly.

- 4.10.9 Verification of repair.
 - When completely assembled, switch the unit to 'on' and perform a full functional check of the SpO₂ function.

4.11 Pump/ Motor Assembly

ABSTRACT:

- 4.11 Removing and replacing the *pump motor assembly* requires the removal of the battery and the front housing. The replacement motor comes with an attached wire tie mounting pad.
- 4.11.1 Preparing the unit for disassembly.
 - _ **Turn** unit off and **disconnect** AC power cord from the unit.
 - Disconnect all accessories from the unit.
 - ____ If the unit is pole mounted, remove unit from the pole.
 - _____ If the unit is wall mounted, **remove** unit from the wall.
 - _____ if the unit is free standing, **turn** the back towards you.
- 4.11.2 Battery cover removal.
 - ____ Remove four (4) Phillips head screws from the battery door.
 - Use T112918 with the #4 Phillips bit.
 - _ **Remove** battery door.
- 4.11.3 Battery removal from battery compartment.
 - **Remove** the battery out of the compartment by turning the unit upside down and shaking until battery begins to slide out.
 - **Disconnect** the two (2) connectors.
 - (If the battery is to be discarded, **comply** with all environmental regulations pertaining to battery disposal.)
- 4.11.4 Opening front housing.
 - **Position** unit so the front panel is facing down.
 - _ Remove six (6) Phillips screws with T112918 and the #6 Phillips bit.
 - **Carefully separate** the front and rear housings.
- 4.11.5 Disconnection of connectors.
 - _ **Disconnect** two (2) four-pin connectors (red) from top of main board to relieve strain.
 - ____ Unplug main 14-pin connector (red) from center of main PCB.
 - **Disconnect** pressure line (1/16" tubing) from transducer.
 - **Disconnect** the printer flex circuit from the main board.
 - ____ **Disconnect** 7-pin connector coming from the temperature connector PCB to the temperature PCB.
 - ____ **Disconnect** the green wire 2-pin connector from the main board. note the orientation of the green wire. It is towards the center of the main PCB, or away from the temperature board.

- 4.11.6 Removing the old pump/motor.
 - **Remove** the tubing from the motor. This can also be done after the motor is more accessible when it is out of the rear housing.
 - _ Place a flat blade screwdriver under the wire tie pad which holds motor in place.
 - ____ Gently **remove** the motor from the rear housing.
 - _ **Unsolder** the orange and white wires from the motor terminals.
 - **Remove** any residue from the old pad with a flat blade screwdriver.

- 4.11.7 Installing a replacement pump/motor assembly.
 - ____ **Clean** the pad mounting area with alcohol prior to soldering. This will allow time for the alcohol to evaporate.
 - **Solder** the orange wire to the plus (+) terminal of the motor.
 - **____ Solder** the white wire to the negative (-) terminal of the motor.

<u>Be careful in this next step. Do not attach the pump/motor assembly to the rear</u> <u>housing until you are sure it is positioned properly. Keep in mind that the wires</u> <u>are intended to be on the left side of the pump/motor assembly, and that the</u> <u>motor end must not be resting against the back wall of the rear housing.</u>

- **Remove** the protective paper from the pad and place the pump motor assembly into the rear housing so that the end of the pump is even with the platform it sits on. This assures that the motor end will not be in contact with the back wall of the rear housing. Be careful to keep the wires away from the adhesive pad. Make sure that the other wires in the area are on the left side of the motor.
- When everything is aligned, **attach** the pump/motor assembly to the rear housing by pressing the adhesive pad against the platform.
- **Connect** the tube to the barb fitting of the pump.

Reassemble in reverse order of disassembly.

- 4.11.8 Verification of repair.
 - When completely assembled, switch the unit to 'on' and perform a full functional check and re-calibration.

4.12 MPL-503 Pressure Switch

ABSTRACT:

- 4.12 Removing and replacing the <u>MPL-503 pressure switch</u> requires the removal of the battery and the front housing. The replacement pressure switch attaches with two torx fasteners. Two spade connectors make up the electrical connections. One tube connects to the switch.
- 4.12.1 preparing the unit for disassembly.
 - **Turn** unit off and **disconnect** AC power cord from the unit.
 - ____ Disconnect all accessories from the unit.
 - ____ If the unit is pole mounted, remove unit from the pole.
 - ____ If the unit is wall mounted, **remove** unit from the wall.
 - ____ If the unit is free standing, **turn** the back towards you.
- 4.12.2 Battery cover removal.
 - **Remove** four (4) Phillips head screws from the battery door.
 - Use T112918 with the #4 Phillips bit.
 - ___ Remove battery door.
- 4.12.3 Battery removal from battery compartment.
 - **Remove** the battery out of the compartment by turning the unit upside down and shaking until battery begins to slide out.
 - __ **Disconnect** the two (2) connectors.
 - (If the battery is to be discarded, **comply** with all environmental regulations pertaining to battery disposal.)
- 4.12.4 Opening front housing.
 - **Position** unit so the front panel is facing down.
 - ____ **Remove** six (6) Phillips screws with T112918 and the #6 Phillips bit.
 - ___ Carefully separate the front and rear housings.
- 4.12.5 Disconnection of connectors.
 - ___ **Disconnect** two (2) four-pin connectors (red) from top of main board to relieve strain.
 - ___ Unplug main 14-pin connector (red) from center of main PCB.
 - **Disconnect** pressure line (1/16" tubing) from transducer.
 - ____ **Disconnect** the printer flex circuit from the main board.
 - ____ **Disconnect** 7-pin connector coming from the temperature connector PCB to the temperature PCB.
 - **Disconnect** the green wire 2-pin connector from the main board.
 - Note the orientation of the green wire. It is towards the center of the main PCB, or away from the temperature board.

4.12.6 Removing the old pressure switch.

- ___ **Remove** the tubing from the switch.
- ____ **Unscrew** two torx fasteners. Use T112917 with the t8 torx bit.
- ____ Gently **remove** the switch from the rear housing.
- **___ Disconnect** the two spade connectors from the switch.

4.12.7 Installing a replacement pressure switch. See figure 4.11.7 below.

- **Connect** the green wire spade connector to the left terminal.
- **Connect** the yellow wire spade connector to the right terminal.
- ____ **Replace** two torx fasteners using T112917 with torx t8 bit.
- **Connect** the tube to the left barb connector of the switch.

Figure 4.11.7 switch connections

Reassemble in reverse order of disassembly.

- 4.12.8 Verification of repair.
 - ____ When completely assembled, switch the unit to 'on' and perform a full functional check and re-calibration.
4.13 Valve (Pneutronics)

ABSTRACT:

- 4.13 Removing and replacing the *Pneutronics valve* requires the removal of the battery and the front housing. The replacement valve attaches with two torx fasteners. Two spade connectors make up the electrical connections. One tube connects to the valve.
- 4.13.1 Preparing the unit for disassembly.
 - _ **Turn** unit off and **disconnect** AC power cord from the unit.
 - ____ **Disconnect** all accessories from the unit.
 - ____ If the unit is pole mounted, remove unit from the pole.
 - _____ If the unit is wall mounted, **remove** unit from the wall.
 - ____ If the unit is free standing, **turn** the back towards you.
- 4.13.2 Battery cover removal.
 - **Remove** four (4) Phillips head screws from the battery door.
 - Use T112918 with the #4 Phillips bit.
 - _ Remove battery door.
- 4.13.3 Battery removal from battery compartment.
 - **Remove** the battery out of the compartment by turning the unit upside down and shaking until battery begins to slide out.
 - ___ **Disconnect** the two (2) connectors.
 - ____ (If the battery is to be discarded, **comply** with all environmental regulations pertaining to battery disposal.)
- 4.13.4 Opening front housing.
 - **Position** unit so the front panel is facing down.
 - ___ Remove six (6) Phillips screws with T112918 and the #6 Phillips bit.
 - ___ Carefully separate the front and rear housings.
- 4.13.5 Disconnection of connectors.
 - ___ Disconnect two (2) four-pin connectors (red) from top of main board to relieve strain.
 - _ Unplug main 14-pin connector (red) from center of main PCB.
 - **Disconnect** pressure line (1/16" tubing) from transducer.
 - ____ **Disconnect** the printer flex circuit from the main board.
 - **Disconnect** 7-pin connector coming from the temperature connector PCB to the temperature PCB.
 - **Disconnect** the green wire 2-pin connector from the main board.
 - Note the orientation of the green wire. It is towards the center of the main PCB, or away from the temperature board.

The front housing is now free of the rear housing

- 4.13.6 Removing the valve.
 - ____ **Remove** the tubing from the valve.
 - _ Unscrew two torx fasteners. Use T112917 with the t8 torx bit.
 - ____ Gently remove the valve from the rear housing.
 - **Disconnect** the two spade connectors from the valve.

- 4.13.7 Installing a replacement valve. See figure 4.12.7 below.
 - **Connect** the green wire spade connector to the left terminal.
 - **Connect** the dark brown wire spade connector to the right terminal.
 - ____ **Replace** two torx fasteners using T112917 with torx t8 bit.
 - ___ Connect the tube to the barb connector of the valve.

Figure 4.12.7 bottom view of valve (pneutronics)

Reassemble in reverse order with attention to the following details.

- 4.13.8 Placement of wires during reassembly.
 - ____ Make sure the four pin wire harness is routed over and around the valve, and not underneath it.
 - ___ Make sure that no wires are pinched underneath the valve.
 - ____ **Make sure** that the dark brown and green wires are pushed down into the housing to eliminate any interference with the gears of the printer.
- 4.13.9 Verification of repair.
 - ___ When completely assembled, switch the unit to 'on' and perform a full functional check and re-calibration.

4.14 Printer/Printer PCB/Keypad

ABSTRACT:

- 4.14 Removing and replacing the *printer /PCB assembly* requires the removal of the battery and the front housing. The *keypad array* can cleaned and or replaced easily *without removing the front housing*. The printer and the printer PCB are soldered together and are replaced as a unit.
- 4.14.1 Preparing the unit for disassembly.
 - _ **Turn** unit off and **disconnect** AC power cord from the unit.
 - ____ **Disconnect** all accessories from the unit.
 - If the unit is pole mounted, remove unit from the pole.
 - If the unit is wall mounted, **remove** unit from the wall.
 - ____ If the unit is free standing, **turn** the back towards you.
- 4.14.2 Battery cover removal.
 - **Remove** four (4) Phillips head screws from the battery door.
 - Use T112918 with the #4 Phillips bit.
 - _ **Remove** battery door.
- 4.14.3 Battery removal from battery compartment.
 - **Remove** the battery out of the compartment by turning the unit upside down and shaking until battery begins to slide out.
 - ___ **Disconnect** the two (2) connectors.
 - ____ (If the battery is to be discarded, **comply** with all environmental regulations pertaining to battery disposal.)
- 4.14.4 Opening front housing.
 - **Position** unit so the front panel is facing down.
 - Remove six (6) Phillips screws with T112918 and the #6 Phillips bit.
 - ___ Carefully separate the front and rear housings.
- 4.14.5 Disconnection of connectors.
 - ___ **Disconnect** two (2) four-pin connectors (red) from top of main board to relieve strain.
 - ____ **Unplug** main 14-pin connector (red) from center of main PCB.
 - **Disconnect** pressure line (1/16" tubing) from transducer.
 - **Disconnect** the printer flex circuit from the main board.
 - ____ **Disconnect** 7-pin connector coming from the temperature connector PCB to the temperature PCB.
 - **Disconnect** the green wire 2-pin connector from the main board.
 - Note the orientation of the green wire. It is towards the center of the main PCB, or away from the temperature board.

The front housing is now free of the rear housing.

```
Revision 4.0
```

- 4.14.6 Remove/clean keypad array.
 - ___ **Remove** the paper cover.
 - ____ Remove the paper roll
 - ____ **Unscrew** two torx fasteners. Use T112917 with the t8 torx bit.
 - ____ Gently **slide** the printer housing cover towards you and disengage the two screw tabs from the rear housing.
 - ____ Very gently **roll** the printer housing cover up and away from you to gain access to the flex circuits underneath.
 - ____ **Disconnect** the white flex circuit connector. (Note the orientation of the blue color on the connector end of the flex circuit. It is facing away from you in while you are disconnecting and reconnecting (later during reassembly).
 - ____ Carefully **unscrew** the five (5) torx fasteners with insulators. Use T112917 with the torx t8 bit. Be careful not to tear the copper shield from its connecting wire.
 - ____ Lift up the copper shield and remove the keypad array.
- 4.14.7 Removing the printer /PCB assembly.
 - **Insert** a flat blade screwdriver under the printer and pry loose the two doublesided foam tape fasteners.
 - ____ **Slide** the printer out of the rear housing.
 - **Pass** the printed circuit board through the opening in the rear housing and completely remove the printer and printer PCB assembly.

Reassemble in reverse order with attention to the following details.

- 4.14.8 Placement of printer in rear housing.
 - ____ When attaching the printer to the rear housing, **make sure** it is positioned all the way into the recess.
- 4.14.9 Attaching printer PCB to printer cover.
 - ____ Carefully **place** the PCB into the cover so that the buttons protrude through the cover. Align the holes in the board with the standoffs on the cover and insert the five (5) screws with plastic insulators.
- 4.14.10 Verification of repair.
 - ___ When completely assembled, **switch** the unit to 'on' and perform a full functional check of printer. Re-calibrate.

4.15 6 Volt Battery

ABSTRACT:

- 4.15 Removing and replacing the battery cover, battery. Occasionally it may be necessary to remove or replace the internal sealed lead battery (rechargeable battery) pn72700. (6v,4ah/20hr)
 - CAUTION: Do not short circuit battery!
 - Do not charge in a sealed container
 - To avoid burn, if contact is made with electrolyte (acid) flush with water immediately!

WARNING: • Insert battery only as shown.

- Failure to observe correct polarity could cause damage to unit.
- When it is necessary to replace the battery, use the approved no.5200-84 replacement battery only.
- Recycle used batteries.
- <u>Make sure that replacement batteries are fully charged before</u> returning unit to customer.
- 4.15.1 Preparing the unit for disassembly.
 - _ **Turn** unit off and **disconnect** AC power cord from the unit.
 - ___ **Disconnect** all accessories from the unit.
 - _ If the unit is pole mounted, remove unit from the pole.
 - ____ If the unit is wall mounted, **remove** unit from the wall.
 - ____ If the unit is free standing, **turn** the back towards you.
- 4.15.2 Battery cover removal.
 - **Remove** four (4) Phillips head screws from the battery door.
 - Use T112918 with the #4 Phillips bit.
 - ___ Remove battery door.
- 4.15.3 Battery removal from battery compartment.
 - **Remove** the battery out of the compartment by turning the unit upside down and shaking until battery begins to slide out.
 - ___ **Disconnect** the two (2) connectors.
 - ____ (If the battery is to be discarded, **comply** with all environmental regulations pertaining to battery disposal.)
- 4.15.4 Battery installation (new or same battery).
 - **Position** battery near battery compartment so that the connector wires are within reach of the battery terminals.
 - Attach battery connectors to the battery as shown in diagram inside of battery compartment. (Connectors are polarized to prevent reverse polarity damage to the unit. Do not cut or remove positive battery connector from battery terminal.
- 4.15.5 Positioning battery strap.
 - **Position** the battery strap under the battery and **slide** the battery into the battery compartment as far as it will go.
 - ____ Fold the end of the battery strap over the battery.

- 4.15.6 Replacing the battery door.
 - Place the battery door over the opening of the battery compartment so that the small ends of the keyhole slots are facing up.
 - **Attach** battery door with the four (4) Phillips screws.
- 4.15.7 Charging battery. (The unit may be used while new battery is charging.)
 - **Connect** AC power transformer to the monitor and allow the new battery to charge for approximately sixteen (16) hours.

SECTION 5:

Test Procedures

5.1 Calibration Test

ABSTRACT: The following is the test procedures for the WELCH ALLYN VITAL SIGNS MONITOR. We set this procedure up so that you can start at section 5.1 and go straight through the procedure or you can skip around. However, you must do all of the test called out in this section before a unit can be returned to field service.

NOTES:

- A. The word "unit" in this text refers to the WELCH ALLYN VITAL SIGNS MONITOR.
- B. *Menu/Choice* represents menu commands. Rather than use the phrase "choose the Exit command from the File menu."
- Connect the WELCH ALLYN VITAL SIGNS MONITOR unit to the manual test station (see Section 2, Figure 2.2.1). Hook up the pressure lines to the coiled tubing of the monitor and the RS 232/Service port connector to the computer. Start the computer program by double clicking on its program icon.
- 2. **Remove** the battery and hook unit up to the power supply and the digital voltage meter. Power supply should be set at 6.5Vdc.
- 3. Turn on the unit and in the program choose Unit/Information. Confirm that the information displayed on the screen matches that of the unit under test. Note : If the software returns an ERROR message, check the communications link, and re-send the command. If the communications return another error close the information dialog box then select Tools/Options and check that the correct communications port is selected. Place the unit into the "Detailed Test" mode by holding down the "start" and "cancel" buttons as power is applied.
- 4. **Observe** the unit. **Verify** that the software versions displayed on the LED displays meet the specifications called out in the Repair Test Specifications document.
- 5. Press the review button on the unit. The systolic window should read "CAL."
- 6. **Attach** a pneumatic clamp to the 100cc and the 250cc volume, remove the clamp from the 500cc volume.
- 7. **Choose** *Test*/*Calibration*. The dialog box will display the unit manometer reading, unit battery reading, valve and pump status.

Note : Use Start button to close valve, and hand bulb to set the pressures.

- Verify that the unit is within calibration specification at all the following target pressures: 0, 50, 100, 150, 250, and 285 mmHg. All target pressures have a tolerance of +/- 5 mmHg. Specification are found in the Repair Test Specifications document.
- 9. Press the "review" button until the systolic window reads "bat."
- 10. Set the power supply to 5.5 +.05,-0 Vdc (5.5 to 6.0 Vdc). Verify that the voltage reading of the unit meets specification called out in the Repair Test Specification document. Return the power supply to 6.5 Vdc upon completion of this test.
- 11 **Press** Close to exit from the "Test Calibration" dialog box.

5.2 Current Tests

- 1. **Connect** the WELCH ALLYN VITAL SIGNS MONITOR unit to the manual test station. Hook up the pressure lines to the coiled tubing of the monitor and the RS 232/Service port connector to the computer. Start the computer program by double clicking on its program icon.
- 2. Turn unit off unit then re-power unit allowing the unit to boot up into its normal mode.
- 3. Click on *Test/Current Levels*. Check the following current levels:
 - a. Blank
 - b. Idle
 - c. Valve
 - d. Pump
 - e. SpO₂
 - f. Temperature
- 4. Verify these currents meet the specifications called out in the Repair Test Specification document.
- 5. Press Close button to exit dialog box.

5.3 Noise Levels

- 1. Connect the WELCH ALLYN VITAL SIGNS MONITOR unit to the manual test station. Hook up the pressure lines to the coiled tubing of the monitor and the RS 232/Service port connector to the computer. Start the computer program by double clicking on its program icon.
- 2. Click on *Test/Noise Levels*.
- 3. Press Test button to retrieve the units internal pressure channel noise level. Verify that the noise level meets the specification called out in the Repair Test Specification document.

5.4 Button Test

- 1. Connect the WELCH ALLYN VITAL SIGNS MONITOR unit to the manual test station. Hook up the pressure lines to the coiled tubing of the monitor and the RS 232/Service port connector to the computer. Start the computer program by double clicking on its program icon.
- 2. Choose *Test/Button Test*. Press each button and ensure that the computer acknowledges it, via the "Button Pressed" display. Each button should also cause the units display to change to one of the settings noted below.

KEY	RESPONSE
Power	0
Start	1
Cancel	2
Review	3
Auto	4
Silence	5
Adjust	6
Select	7
Pressure Preset	8
Mode	9
Form Feed	F
Print	Р
Invalid response	E

- F,P When printer option is installed
- E Usually multiple keys pressed.
- 3. Press Close button to exit from dialog box.

5.5 Print Quality

- 1. Connect the WELCH ALLYN VITAL SIGNS MONITOR unit to the manual test station. Hook up the pressure lines to the coiled tubing of the monitor and the RS 232/Service port connector to the computer. Start the computer program by double clicking on its program icon.
- 2. Choose *Test/Print Quality*. Choose "test pattern 1." The printer will print out a pattern of large and small ASCII characters. Verify the quality of the printer output. Once test 1 is complete, choose "test pattern 2." The printer will print out a solid gray field. Verify the quality of the printer output.

Note : This option will only work when the printer option is installed.

5.6 Pneumatics Tests

- 1. Connect the WELCH ALLYN VITAL SIGNS MONITOR unit to the manual test station. Hook up the pressure lines to the coiled tubing of the monitor and the RS 232/Service port connector to the computer. Start the computer program by double clicking on its program icon.
- Place unit into the "detailed test" mode. Do this by holding down the start and cancel buttons as the unit is powered up. Clamp off the 500cc and 250cc volumes, leaving the 100cc volume connected to the unit. Press the "review button" until "CAL" appears. Press the Start button to close the units valve. Using the hand bulb inflate the unit to the first test pressure, 250mmHg +/- 5mmHg (245 to 255 mmHg), and wait 15 seconds to stabilize.
- 3. Select *Test/Pneumatic*, and then the "Leak Test" option. Press the Test button to perform the first leak test. The test lasts 15 seconds. Once the test is complete the pressure change is displayed in the "Pressure" box. Verify that the leak rate meets the specification called out in the Repair Test Specification document.

Press the Cancel button to open the unit valve and release the pressure.

Note : The software will verify that the pressure is 250mmHg +/- 5mmHg, before it will begin a leak test.

4. Open the valve on the bulb and release pressure to the second test pressure, 50mmHg +/- 5mmHg (45 to 55 mmHg), and wait 15 seconds to stabilize.

Press the Test button to perform the second leak test. The test lasts 15 seconds. Once the test is complete the pressure change is displayed in the "Pressure" box. Verify that the leak rate meets the specification called out in the Repair Test Specification document.

5. Press the Cancel button to open the unit valve and release the pressure.

Note : The software will verify that the pressure is 50mmHg +/- 5mmHg, before it will begin a leak test.

6. Power down the unit and power the unit back up allowing it to boot up into its normal

mode.

- 7. Remove the clamp from the 250cc volume and place it on the 100cc volume. Select the "Inflation Test" option, and press the Test button. The unit will perform an inflation test. The inflation time is displayed in the "Timer" box. Verify that the inflation time meets the specification called out in the Repair Test Specification document.
- 8. Remove the clamp from the 500cc volume and place it on the 250cc volume. Select the "Dump Test" option, and press the Test button. The unit will perform a dump test. The dump time is displayed in the "Timer" box. Verify that the dump time meets the specification called out in the Repair Test Specification document.
- 9. Disconnect the test equipment pneumatic hose from the unit. Connect the large cuff with coiled tubing to the unit's manifold. Wrap the large cuff around the 500cc volume, insuring that the white line, that runs along the end of the cuff, lines up with the "N" in the word "RANGE." Select the Deflation Test option, and press the "TEST" button. The unit will do a normal blood pressure cycle and then display the step pressures in the "Valve Step Array Data" box. Verify that the step array data meets the specifications called out in the Repair Test Specification document.

Click on Close when all tests have been completed.

5.7 Hardware Fail-safes

- 1. Connect the WELCH ALLYN MONITOR unit to the manual test station. Hook up the pressure lines to the coiled tubing of the monitor and the RS 232/Service port connector to the computer. Start the computer program by double clicking on its program icon.
- 2. Place the unit into the "Detailed Test" mode. Do this by holding the "start" and "cancel" button as the unit is powered up. Press the review button until "CAL" appears in the systolic window.
- 3. Select the Test/Hardware Fail-safes menu item.
- 4. Select the "Over Pressure" test, remove the cuff from the unit and attach the test station's Pneumatic tubing to the unit. Press the Test button. Using the hand bulb, slowly increase the pressure, while observing the external pressure meter. The unit will return the hardware failsafe condition, E10. At this point, record the highest pressure observed on the external pressure meter. Verify that the over pressure value meets the specification called out in the Repair Test Specification document.
- 5. Select the Over 15mm Hg test, then press the Start Test button. Increase the pressure on the unit to above 15mm Hg, using the hand bulb. Once the pressure is above 15mm Hg the timer will start. As long as the units pressure remains above 15mm Hg the timer will keep increasing. If the unit drops below 15mm Hg the timer is reset. Verify that the pressure time out meets the specification called out in the Repair Test Specification document.

This time is displayed in the "Timer" box.

- 6. Power down the unit, then power back up allowing the unit to go into it's "normal" mode.
- 7. Select the Under 15mm Hg test, then press the Start Test button.
- 8. <u>No user interaction required for this step</u>: The software will count down from 45 seconds before the unit is put into an auto cycle mode. Once in the auto-cycle mode the unit will start a cycle, which the software will then cancel. Once the system pressure drops below 15mm the timer will start again.
- 9. Verify that the auto test meets the specification called out in the Repair Test Specification document in Section 7.

5.8 SpO₂ Tests

- 5.8.1 Nonin SpO₂
 - 1. Connect the Nonin SpO₂ simulator to the unit with the test cable. The reading of the SpO₂ should be within the specified range indicated on the simulator.
 - 2. Reconnect the SpO_2 sensor. Place the sensor onto your finger. The unit should return a reading if the sensor is OK.
- 5.8.2 Nellcor SpO₂
 - 1. Connect the Nellcor SpO₂ simulator to the unit with the test cable. Make sure that the following settings* of the simulator are selected:

Rate: 112 Light: High 1 Modulation: High RCAL Mode: RCAL63/Local

Insure that the readings of the SpO_2 are within the specifications indicated on the simulator.

2. Reconnect the SpO_2 sensor. Place sensor onto your finger. The unit should return a reading if the sensor is OK.

*Note: On the Nellcor Simulator, if the settings are outside what is called out above, the alarms will activate on the monitor.

5.9 Temperature Tests

- 1. Disconnect the temperature probe from the unit leaving the probe itself in its housing. Place the "CAL key" into the connector. Remove the probe from the housing. The temperature should read the same as what is specified on the "cal" key. Remove the "cal" key and reconnect the probe. Place probe back into the housing.
- Make sure that the unit's temperature option is in the "monitor mode". Do this by removing the probe from the housing and observing the temperature display. "Monitor mode" should be seen in the lower right hand side of the display. If this is not seen, wait approximately 30 - 45 seconds and the unit will change mode to the "monitor mode."
- Set up the Diatek 9600 calibrator. Set the calibrator to 96.4 F (35.8 C) or use a water bath between 84 F (28.8 C) and 106 F (41.1 C). Allow the calibrator to stabilize for three (3) minutes. Place the probe into the small hole in the calibrator. Observe the temperature display, The reading should be within the specified range, within 30 - 45 seconds.
- 4. Place the probe back into the housing. Set the calibrator to 106 F (41.1 C). Allow the calibrator to stabilize for three minutes. Remove the probe from the housing, the unit must be in the monitor mode, if not wait until the unit is in that mode. Place probe into the small hole at the top of the calibrator. The reading should be within the specified range, within 30 45 seconds. If using a water bath skip this part of the test.

5.10 Check List For Welch Allyn Vital Signs **Monitor Service Work**

General Data

Service/Repair Date:	
Test Technician Name:	
Unit Serial Number:	
Life Cycle Count:	
Model Number:	
Calibration:	

Repair Data:

Check all items repaired/replaced and record serial # where possible:

- R1 Main PCB
- R2 Display PCB
- R3 DC to DC Converter
- R4 Transducer
- □ R5 Temperature PCB
- R6 Temp. Conn. PCB
- □ R7 SpO₂ PCB (□Nonin □Nellcor)
- 🗌 R8 Valvé
- R9 Pump
- R10 Printer
- □ R11 Switch Array
- R12 Printer Flat Cable

Customer Complaint Codes:

- □ A1 Will not take BP reading.
- \Box A2 Will not take SpO₂ reading.
- \Box A3 Will not take temperature reading. \Box A8 Housing Damaged (rear)
- □ A4 Will not print.

Malfunction Codes: (Root Cause)

- □ 001 Main PCB
- 002 Temp. Connector

003 - Temp. Harness 011 - Button Array

- 004 Printer 005 - Battery
- □ 012 Other Component

□ 009 - Printer PCB

- 014 Other
- 006 Temp. S/W bug 007 - Assembly Error
- 008 Display PCB
- $\square 014 Other$ $\square 015 SpO_{2} PCB (\squareNeilcor)$

□ 010 - Printer Flat Cable

016 - Main Harness

017 - Valve

- R13 Manifold
- □ R14 Pneumatic Tubing
- R15 Main Wire Harness
- R16 Pressure Switch
 - □ R17 Battery
- R18 Front Housing
- R19 Rear Housing
- R20 Temperature Probe
- \square R21 SpO₂ Probe
- R22 Printer PCB
- □ R23 Main Wire Harness
- R24 Other: ____
- \Box A5 Will not power up (turn on).
- A6 LED's out.
- □ A7 Housing Damaged (front)
- A9 Other: _____
 - □ 018 Pressure Switch
 - □ 019 Recover temp. error
 - 020 Test Equip. Prob.
 - 🗌 021 Temp. PCB
- □ 013 Welch Allyn S/W bug □ 022 SpO, Harness
 - 023 Pump
 - □ 024 DC to DC convert.
 - □ 025 SpO, S/W bug
 - 026 Bad Solder

Test Information:			Acceptable Ranges
Unit software version			(>1.69)
Temperature s/w ver.(If available)			(>2.4)
SpO ₂ software version(if available)	□Nonin	Nellcor	(<u>Nonin</u> :>5; <u>Nellcor</u> :>1.1.0.6)
Test pressure @ 0 mmHg			(-0.3 to 0.3mmHg)
Unit pressure @ 0 mmHg			(-0.75 to 0.75mmHg)
Test pressure @ 50 mmHg			(45 to 55mmHg)
Unit pressure @ 50 mmHg			(±1.5mmHg)
Test pressure @ 100 mmHg			(95 to 105mmHg)
Unit pressure @ 100 mmHg			(±1.5mmHg)
Test pressure @ 150 mmHg			(145 to 155mmHg)
Unit pressure @ 150 mmHg			(±1.5mmHg)
Test pressure @ 250 mmHg			(245 to 255mmHg)
Unit pressure @ 250 mmHg			(±1.5mmHg)
Test pressure @ 285 mmHg			(290 to 280mmHg)
Unit pressure @ 285 mmHg			(±1.5mmHg)
Test voltage 5.5 Vdc			(5.5 to 6.0Vdc)
Unit voltage 5.5 Vdc			(±0.05Vdc)
Blank mode current			(≤80mA)
Idle mode current			(≤800mÁ)
Valve current			(≤140mA)
Pump current			(≤550mA)
SpO, current (if available)	□Nonin	Nellcor	(Nonin:≤80mA; Nellcor:≤120mA)
Temperature current (if available)			(≤15mA)
Noise level			(≤0.05mmHg)
Button test			_ (Pass/Fail)
Print quality (if available)			_ (Pass/Fail)
Unit leak @ 250 mmHg(245/255 mmHg)			(≤5mmHg)
Unit leak @ 50 mmHg (45/55 mmHg)			(≤5mmHg)
Inflation Time			(≤7 seconds)
Dump time			(≤10 seconds)
Deflation Test			_ (Pass/Fail)
Over pressure value			(296 to 329mmHg)
Over 15mm Hg			(155 to 180 seconds)
Under 15mm Hg			(Pass/Fail)
SpO, sim. reading(if available)	Nonin	Nellcor	(Nonin:98%,80BPM; Nellcor:81%,112BPM)
SpO ² sensor reading(if available)	Nonin	 Nellcor	(Pass/Fail)
Temp. "Cal-key" read(if available)			(97.3±0.2°F, 36.3±0.1°C)
Temp. calibrator read(if available)			(96.1°F to 96.7°F) (35.6°C to 36.0°Ć)
Temp. calibrator read(if available)			(105.7°F to 106.3°F) (40.9°C to 41.3°C)

For test data specifications consult the Repair Test Specification Document.

SECTION 6:

A) Drawings
B) Schematics
C) Board Layouts
D) Bill of Materials

Due to the proprietary nature of the SpO2 PCBs of Nonin and Nellcor, the schematics, board layouts and bills of material could not be placed into this service manual. Please contact Nonin or Nellcor directly for this information.

Thanks!
MAIN BOARD, VSM with Nellco	or	Schematic Revised: April 24, 1998		
125S221A MT41286		Drawing Revision: B		
Bill Of Materials				Page 1 of 5
Item Qty Reference	Va	lue	Part / Alternates	Decal

THIS PAGE NOT USED --- SEE SHEET 1 OF DRAWING

MAI	MAIN BOARD, VSM with Nellcor Schematic Revised: April 24, 1998							
1258	5221	A N	IT41286					
Bill (Of Ma	aterials		C		Page 2 of 5		
Item	Qty	Reference		Value	Part / Alternates	Decal		
1	25	C1,C2,C3,C4,C5,C6,C7, C8,C 9,C10,C11,C12,C13, C14,C17,C18,C26,C29, C31,C32, C36,C37,C38, C40,C53	A	0.1UF CERAMIC Z5U	VITRAMON VJ0805U104MXAMT	SMD805		
2	2	C15,C16	А	10PF CERAMIC NP0	AVX 08051A100KATMA	SMD805		
3	3	C19,C25,C44	А	33UF 16V TANTALUM	AVX TAJD336M016R	SMDTC2		
4	3	C20,C22,C23	А	100UF TANTALUM 6.3V	AVX TAJD107K006R	SMDTC2		
5	5	C21,C39,C43,C46,C47	А	0.01UF CERAMIC X7R	AVX 08055C103KATMA	SMD805		
6	3	C24,C42,C45	А	1000PF CERAMIC X7R	AVX 08055C102KATMA	SMD805		
7	3	C27,C41,C49	А	4.7UF TANTALUM 10V	AVX TAJB475M010R	SMD3528		
8	1	C28	А	100PF CERAMIC NPO	AVX 08055A101KATMA	SMD805		
9	1	C30	А	10UF 25V TANTALUM	AVX TAJD106M025R	SMDTC2		
10	1	C33	А	4700PF CERAMIC NP0	AVX 12101A472JATMA	SMD1210		
11	1	C34	А	1500PF CERAMIC NP0	AVX 12061A152JATMA	SMD1206		
12	1	C35	Α	0.033UF CERAMIC X7R	AVX 08055C333JATMA	SMD805		
13	1	C48	А	1UF TANTALUM 16V	AVX TAJA105K016R	SMDTCA		
14	3	C50,C51,C52	А	10UF TANTALUM 10V	AVX TAJC106K010R	SMTTC1		
15	4	D1,D2,D5,D7	A	MMBD1204 DUAL DIODE	NATIONAL MMBD1204	WAC_SOT-23_3		
16	1	D3	А	10MQ090 SCHOTTKY RECTIFIER	IR 10MQ090, 10MQ100	D-64		
17	1	D4	А	DL4003 RECTIFIER	DIODES INC DL4003TR	DL-41		
18	1	D6	А	5.1V ZENER DIODE	MOTOROLA MMBZ5231BL	WAC_SOT-23_3		
19	1	D8	Α	LM385M VOLTAGE REFERENCE	NATIONAL LM385M	SO8		
20	1	FOR F1	А	FUSE HOLDER	SCHURTER OGN031.8201	DUMMY		
21	2	FOR PHO2-1,-2	А	SPACER	BIVAR ELM3-200	DUMMY		
22	1	FOR Y1	А	SPACER	BIVAR CI-192-028	DUMMY		
23	1	F1	А	FUSE 5A	SCHURTER SPT001.2511	CM113		
24	1	ISO1	-	DC-DC CONVERTER	POWER CONVERTABLE PWR1300A	CM093		
25	3	ISO2,ISO3,ISO	А	HCNW139 OPTOCOUPLER	HP HCNW139	CM086		
27	7	J2,J4,J6,J8,J9,J10,J12	-	JUMPER	DO-NOT-INSTALL THRU-HOLE 0.1" SPACING	JUMP100		
28	2	J5,J11	А	ZERO OHM RESISTOR	KOA RM73Z2AT	SMD805		
29	2	J13,J14	-	ZERO OHM RESISTOR	KOA RM73Z2AT	SMD805		

MAI	N BC	OARD, VSM with Nellcor		Schematic Revised:	Schematic Revised: April 24, 1998			
1258	5221	A MT	4128	6 Drawing Revision: I	3			
Bill ()f Ma	aterials		U		Page 3 of 5		
Item	Qty	Reference		Value	Part / Alternates	Decal		
30	1	L1	А	220UH INDUCTOR	DELEVAN DVN 1812-224KT	SMD1812		
31	1	N1	-	NODE	NOT-A-PART	SMDNODE		
32	1	PCB1	Α	BARE BOARD		DUMMY		
33	1	PHO1	-	PHOTOSENSOR	ROHM RPR-363A	CM206		
34	1	PHO2	А	PHOTOINTERRUPTER	OPTEK OPB810L51	CM302		
35	2	P1,P2	-	NOT-A-PART		DUMMY		
36	2	Q1,Q10	А	2N7002 NMOS	SILICONIX 2N7002	WAC SOT-23 3		
37	7	Q2,Q3,Q6,Q7, Q9,Q17,Q18	А	MMBT3904 NPN	MOTOROLA MMBT3904LT1	WAC_SOT-23_3		
38	2	Q4,Q5	А	SI9955DY DUAL NPN	SILICONIX SI9955DY	SO8		
39	1	Q11	А	TRANSISTOR NMOS	MOTOROLA MMBF0201NLT1	WAC_SOT-23_3		
40	1	Q15	-	TP0610T PMOS	SILICONIX TP0610T	WAC_SOT-23_3		
41	1	Q16	-	SI9955DY DUAL NPN	SILICONIX SI9955DY	SO8		
42	1	RN1	Α	100K 1/10W 1%	CTS 766-141104GTR07	SO14		
43	2	R1,R26	Α	9.09K 1/10W 1%	KOA RK73H2AT9091F	SMD805		
44	6	R2,R34,R37,R52, R61,R80	Α	1K 1/10W 1%	KOA RK73H2AT1001F	SMD805		
45	4	R3,R5,R18,R72	Α	12.1K 1/10W 1%	KOA RK73H2AT1212F	SMD805		
46	9	R4,R10,R13,R14,R19, R23,R44,R66,R82	А	10K 1/10W 1%	KOA RK73H2AT1002F	SMD805		
47	2	R6,R16	Α	38.3K 1/10W 1%	KOA RK73H2AT3832F	SMD805		
48	1	R7	А	5.11K 1/10W 1%	KOA RK73H2AT5111F	SMD805		
49	7	R8,R9,R11,R12,R51, R68.R86	А	1M 1/10W 1%	KOA RK73H2AT1004F	SMD805		
50	1	R15	А	26.1K 1/10W 1%	KOA RK73H2AT2612F	SMD805		
51	13	R17,R22,R32,R46,R47, R54,R55,R56,R60,R76, R77,R85,R88	A	100K 1/10W 1%	KOA RK73H2AT1003F	SMD805		
52	1	R20	А	215 1/10W 1%	KOA RK73H2AT2150F	SMD805		
53	3	R21,R65,R67	А	100 1/10W 1%	KOA RK73H2AT1000F	SMD805		
54	1	R24	-	INF	DO-NOT-INSTALL	SMD805		
55	1	R25	А	162K 1/10W 1%	KOA RK73H2AT1623F	SMD805		
56	3	R27,R33,R38	А	2.15K 1/10W 1%	KOA RK73H2AT2151F	SMD805		
57	2	R28, R78	А	909 1/10W 1%	KOA RK73H2AT9090F	SMD805		
58	1	R29	А	196 1/10W 1%	KOA RK73H2AT1960F	SMD805		
59	3	R30,R31,R53	А	316K 1/10W 1%	KOA RK73H2AT3163F	SMD805		

MAI	N BC	DARD, VSM with Nellcor		Schematic Revised: Ap	Schematic Revised: April 24, 1998			
1258	5221	Α	MT4128	6 Drawing Revision: B				
Bill Of Materials		aterials		6		Page 4 of 5		
Item	Qty	Reference		Value	Part / Alternates	Decal		
60	2	R35,R70	A	3.16K 1/10W 1%	KOA RK73H2AT3161F	SMD805		
61	1	R36	А	68.1K 1/10W 1%	KOA RK73H2AT6812F	SMD805		
62	2	R39,R40	А	82.5K 1/10W 1%	KOA RK73H2AT8252F	SMD805		
63	1	R41	А	2.61K 1/10W 1%	KOA RK73H2AT2611F	SMD805		
					SEI RMC/10 1% 2.61			
64	3	R42,R45,R69	А	17.8K 1/10W 1%	KOA RK73H2AT1782F	SMD805		
65	1	R43	А	56.2K 1/10W 1%	KOA RK73H2AT5622F	SMD805		
66	1	R48	А	110K 1/10W 1%	KOA RK73H2AT1103F	SMD805		
67	1	R49	А	261K 1/10W 1%	KOA RK73H2AT2613F	SMD805		
68	1	R50	А	619 1/10W 1%	KOA RK73H2AT6190F	SMD805		
69	1	R57	А	31.6K 1/10W 1%	KOA RK73H2AT3162F	SMD805		
70	1	R62	А	4.64K 1/10W 1%	KOA RK73H2AT4641F	SMD805		
71	1	R63	А	121K 1/10W 1%	KOA RK73H2AT1213F	SMD805		
72	1	R64	А	383K 1/10W 1%	KOA RK73H2AT3833F	SMD805		
73	1	R71	А	13.3K 1/10W 1%	KOA RK73H2AT1332F	SMD805		
74	1	R73	А	7.5K 1/10W 1%	KOA RK73H2AT7501F	SMD805		
75	1	R74	А	51.1K 1/10W 1%	KOA RK73H2AT5112F	SMD805		
76	1	R79	А	110 1/10W 1%	KOA RK73H2AT1100F	SMD805		
77	1	R81	А	237 1/10W 1%	KOA RK73H2AT2370F	SMD805		
78	1	R83	-	INF DO-NOT-INSTALL	DO-NOT-INSTALL	SMD805		
79	1	R84	А	31.6 1/10W 1%	KOA RK73H2AT31R6F	SMD805		
80	1	R87	А	46.4K 1/10W 1%	KOA RK73H2AT4642F	SMD805		
81	2	R89,R90	-	100 1/10W 1%	KOA RK73H2AT1000F	SMD805		
82	25	TP1,2,3,4,5,6,7,8,9,10, 11,12,13,14,15,16,17, 18,19,20,21,22,23,24,25	-	ТР	NOT-A-PART	TP40		
83	1	U1	А	Z180FP MICROPROCESSOR	ZILOG Z8018008FSC	FP-80B		
84	1	U2	А	29F010 FLASH PROM 128K*8	AMD 29F010-120JC	PLCC32		
85	1	U3	А	TC55257 STATIC RAM 8K*8	TOSHIBA TC55257DFL-85L	SO28W		
86	1	U4	А	DS1232 WATCHDOG/RESET	DALLAS DS1232LPS-2	SO8		
87	1	U5	А	93C46 EEPROM 1KBIT	NATIONAL NM93C46AM8	SO8		
88	1	U6	А	74HC32 QUAD OR GATE	MOTOROLA MC74HC32AD	SO14		
89	1	U7	А	74HC138 3-8 DECODER	MOTOROLA MC74HC138AD	SO16		
90	1	U8	А	82C54 TRIPLE TIMER	INTEL N82C54-2	PLCC28		
91	1	U9	А	DS1284 REAL TIME CLOCK	DALLAS DS1284Q	PLCC28		

MAIN BOARD, VSM with Nellcor 125S221A			ſ			
			MT41286	5 Drawing Revision: B		
Bill Of Materials					Page 5 of 5	
Item Qty Reference		Value		Part / Alternates	Decal	
92	3	U10,U11,U24	A	74HC259 8BIT ADDRESSABLE LATCH	MOTOROLA MC74HC259D	SO16
93	1	U12	А	4013 DUAL D-FF	MOTOROLA MC14013BD	SO14
94	1	U13	А	74HC139 DUAL 2-4 DECODER	MOTOROLA MC74HC139AD	SO16
95	2	U14,U15	А	4060 OSC/DIVIDER	MOTOROLA MC14060BD	SO16
96	3	U16,U17,U19	А	74HC00 QUAD NAND	MOTOROLA MC74HC00AD	SO14
97	3	U18,U20,U22	А	74HC74 DUAL D-FF	MOTOROLA MC74HC74AD	SO14
98	1	U21	А	74HC02 QUAD NOR	MOTOROLA MC74HC02AD	SO14
99	2	U23,U25	А	74HC251 8-CH DATA SELECTOR	MOTOROLA MC74HC251D	SO16
100	3	U26,U27,U32	А	LT1129 REGULATOR	LINEAR TECH LT1129CT FLOW 06	TO220-5A
101	1	U28	А	LM2941 REGULATOR	NATIONAL LM2941CT	TO220-5A
102	2	U29,U33	А	NE5234 QUAD OP-AMP	PHILIPS NE5234D	SO14
103	1	U30	А	4051 8-CH ANALOG MUX	MOTOROLA MC14051BD	SO16
104	1	U31	А	555 TIMER	MOTOROLA MC1455D	SO8
105	1	U34	А	DS1267 DUAL DIGITAL POT 100K	DALLAS DS1267S-100	SO16W
106	1	U35	А	LM334 TEMP SENSOR	LINEAR TECH LM334S8	SO8
					NATIONAL LM334SM	
107	1	U36	А	LM2931	NATIONAL LM2931AM-5.0	SO8
108	1	U37	А	MAX861 CHARGE PUMP 50MA	MAXIM MAX861CSA	S08
109	1	U38	А	74HC126 QUAD TRISTATE BUFFER	MOTOROLA MC74HC126AD	SO14
110	1	U39	А	PC16550 UART	NATIONAL PC16550DVEF	M_QFP44
111	1	XD1	А	SX05GD2 PRESSURE XDUCER	SENSYM SX05GD2	CM214
112	1	X1	А	HDR14 HEADER	AMP 1-640454-4	CM212
113	1	X2	А	HDR7 HEADER	AMP 640454-7	CM303
114	1	X3	А	HDR4 HEADER	AMP 640454-4	CM105
115	1	X4	А	HEADER18 HEADER	MOLEX 52207-1890	CM098
116	1	X5	А	HEADER24 HEADER	MOLEX 52207-2490	CM141
117	1	X7	А	HDR2 HEADER	MOLEX 22-28-4020	JUMP100
118	1	X8	А	HDR7 HEADER 7-PIN	AMP 641215-7	CM215
119	1	Y1	А	12.288MHZ CRYSTAL	FOX FOXS/128	XTAL200
120	1	Y2	А	32.768KHZ CRYSTAL	SEIKO DS-VT-200	FX-3_H
					OR DALLAS DS9032	
					OR DAIWA/KDS DT-38	
					OR FOX NC26	

REVISIONS: 1. AMT40863-10 INTRODUCE 2. AMT40863-15 CHANGERR/MCREATCS TMB-05 3. AMT40863-15 CHANGERR/MCREATCS CHANGE LDS: A FROM ELM2438 TO ELM2438

SCHEMATIC, DISPLAY BOARD, CVSM Size Document Number D 109P378 AMT40663-49 Date: June 4, 1936 (Steel

4-CHANGESPÄCER FROM ELMA-135 TO ELMA-110 WELCH ALLYN / TYCOS INSTRUMENTS

CVSM DISPLAY BOARD 125S208A AMT40863-49

Bill Of Materials

Revised: June 4, 1996 Schematic Revision: 4

ITEM	QTY	REFERENCE	CONFIG	VALUE/DESCRIPTION	MFG/MFG #	ALTERNATES	DECAL
1	1	BA1	A	HLCP-J100 10-bargraph	HP HLCP-J100		CM059
2	1	BZ1	A	BUZZER	STAR MICRONICS TMB-05		CM063
3	18	C1,C2,C3,C4,C5,C6,C7,C8, C9,C10,C11,C12,C13,C14, C15,C16,C17,C18	А	0.1UF Ceramic Z5U	T&B/VITRAMON VJ0805U104MXAMT		SMD805
4	8	DS1,DS2,DS12,DS13,DS14,	А	MTN7156M-CUR 14mm red LED display	MARKTECH MTN7156M-CUR		CM003
		DS15,DS16,DS17					
5	3	DS3,DS4,DS8	A	LA-401YN 10mm yellow LED display	ROHM LA-401YN		CM002
6	б	DS5,DS6,DS7,DS9,DS10, DS11	A	HDSP-A103 7mm red LED display	HP HDSP-A103		CM021
7	1	D1	A	MMBD1204 Dual diode	NATIONAL MMBD1204		WAC_SOT-23_3
8	1	FOR BA1	A	INSULATING PAD	BIVAR 816-080		
9	6	FOR DS3B,FOR DS3A, FOR DS4B,FOR DS4A, FOR DS8B,FOR DS8A	A	INSULATING PAD	BIVAR 366-300		
10	12	FOR DS5B,FOR DS5A, FOR DS6B,FOR DS6A, FOR DS7B,FOR DS7A, FOR DS9B,FOR DS9A, FOR DS10B,FOR DS10A, FOR DS11B,FOR DS11A	A	INSULATING PAD	BIVAR 388-075		
11	3	FOR LD1, FOR LD2, FOR LD3	A	INSULATING PAD	BIVAR ELM2-265		
12	6	FOR LD5,FOR LD6,FOR LD7, FOR LD8,FOR LD9,FOR LD10	A	INSULATING PAD	BIVAR ELM2-110		
13	1	LD1	A	GREEN (POWER)	ROHM SLR-37MC3F		CM060
14	1	LD2	A	GREEN (AUTO)	ROHM SLR-37MC3F		CM060
15	1	LD3	A	YELLOW (SILENCE)	ROHM SLR-37YC3F		CM132
16	2	LD4,LD14	A	GREEN RECTANGULAR (MEMORY)	HP HLMP-0504		CM204
17	1	LD5	A	YELLOW (CHARGE)	ROHM SLR-37YC3F		CM132
18	1	LD6	A	YELLOW (LOW BATT)	ROHM SLR-37YC3F		CM132
19	1	LD7	A	GREEN (SPO2) SPO2 OPTION	ROHM SLR-37MC3F		CM060
20	1	LD8	A	GREEN (BP) SPO2 OPTION	ROHM SLR-37MC3F		CM060
21	1	LD9	A	GREEN (DEGF) SPO2 OPTION	ROHM SLR-37MC3F		CM060
22	1	LD10	A	GREEN (DEGC) TEMP. OPTION	ROHM SLR-37MC3F		CM060
23	2	LD11,LD12	A	GREEN RECTANGULAR (MONITOR) TEMP. OPTION	HP HLMP-0504		CM204
24	1	LD13	-	GREEN RECTANGULAR (MONITOR) TEMP. OPTION	HP HLMP-0504		CM204
26	1	Ql	A	MMBT3904 NPN	MOTOROLA MMBT3904LT1		WAC_SOT-23_3

CVSM DISPLAY BOARD 125S208A AMT40863-49

Bill Of Materials

Revised: June 4, 1996 Schematic Revision: 4

27	80	R1 R2 R3 R4 R5 R6 R7 R8	Δ	681 1/10W 1%	KOA RK73H2AT6810F	SMD805
27	00	R9 R10 R11 R12 R13 R14	n	001 1/100 10	KOR KK/SHZRIOUIOF	510005
		R15, R16, R17, R18, R19, R20,				
		R21, R22, R23, R24, R25, R26,				
		R27.R28.R29.R30.R31.R32.				
		R33,R34,R35,R36,R37,R38,				
		R39, R40, R41, R42, R43, R44,				
		R45,R46,R47,R48,R49,R50,				
		R93,R116,R117,R118,R119,				
		R120,R121,R122,R123,R124,				
		R125,R126,R127,R128,R129,				
		R130,R131,R132,R133,R134,				
		R135,R136,R137,R138,R139,				
		R140,R141,R142,R145,R146				
28	21	R51,R52,R53,R54,R55,R56,	A	316 SMD805	KOA RK73H2AT3160F	SMD805
		R57,R58,R59,R60,R61,R62,				
		R63,R64,R65,R66,R67,R68,				
		R69,R70,R71				
29	43	R72,R73,R74,R75,R76,R77,	A	1K21 1/10W 1%	KOA RK73H2AT1211F	SMD805
		R78,R79,R80,R81,R82,R83,				
		R84,R85,R86,R87,R88,R89,				
		R90,R91,R92,R94,R95,R96,				
		R97,R98,R99,R100,R101,				
		R102,R103,R104,R105,R106,				
		R107,R108,R109,R110,R111,				
	_	R112,R113,R114,R115				
30	1	R143	A	10K 1/10W 1%	KOA RK73H2AT1002F	SMD805
31	1	R144	A	215K 1/10W 1%	KOA RK73H2AT2153F	SMD805
32	10	S1, S2, S3, S4, S5, S6, S7, S8,	-	SWPB	NOT-A-PART	SW-CONTACT
2.2	2	S9,S10				77.40
33	3	TPL, TPZ, TP3	-	TP	NOT-A-PART	TP40
34	18	01,02,03,04,05,06,07,08,	A	W/ hold reg	MOTOROLA MC74HC595AD	SOL
		U9,U10,U11,U12,U13,U14, U15,U16,U17,U18				
35	1	X1	А	HEADER24 Header	MOLEX 52207-2490	CM141

VSM PRINTER BOARD

125S209A Bill Of Materials MT41286

Schematic Revised: April 24, 1998 Drawing Revision: B

ITEM OTY REFERENCE VALUE/DESCRIPTION MFG/MFG # DECAL ALTERNATES CONFIG C1 2200UF Electrolytic 1 Panasonic EEU-FA1A222 CM159 1 Α 2 C2,C5,C6, 5 0.1UF Ceramic Z5U T&B/VITRAMON SMD805 Α C7,C8 VJ0805U104MXAMT 3 2 C3,C4 Α 33PF Ceramic NP0 SMD805 AVX/KYOCERA 08055A330KATMA 1 С9 820PF Ceramic X7R AVX/KYOCERA 4 Α SMD805 08051C821KATMA 5 1 MMBD914LT1 Diode WAC SOT-D1 Α MOTOROLA MMBD914LT1 23 3 JUMP805 6 11 JP1, JP2, JP4, А JUMP1 SMD805 JP5, JP10, JP11 JP12, JP14, JP15 JP18, JP19 7 8 JP3, JP6, JP7, SMD805 JUMP0 NOT-A-PART _ JP8, JP9, JP13, JP16, JP17 WAC_SOT-23_3 9 1 01 Α MMBT4401LT1 NPN MOTOROLA MMBT4401LT1 10 2 RN2,RN1 А 100K CTS 766-141104GTR07 S014 11 2 R3,R1 Α 1K 1/10W 1% KOA RK73H2AT1001F SMD805 12 1 1M 1/10W 1% KOA RK73H2AT1004F R2 Α SMD805 13 2 А R4,R11 100K 1/10W 1% KOA RK73H2AT1003F SMD805 14 1 R5 Α 33K2 1/10W 1% KOA RK73H2AT3322F SMD805 15 200K 1/10W 1% KOA RK73H2AT2003F SMD805 1 Rб Α 16 1 R7 2K 1/10W 1% KOA RK73H2AT2001F SMD805 А 17 R8 1 Α 22.1K 1/10W 1% KOA RK73H2AT2212 SMD805 18 1 R12 Α 10K 1/10W 1% KOA RK73H2AT1002F SMD805 19 1 S1 FEED NOT-A-PART SW-CONTACT _ 1 S2 PRINT NOT-A-PART SW-CONTACT 20 _ 21 1 M50747-1C9FP QFP-72 U1 Α SEIKO/MITSUBISHI M50747-1C9FP Microcontroller 22 U3,U2 ULN2068LB Ouad driver ALLEGRO ULN2068LB SO20W 2 А 23 1 IJ4 А ULN2803A Octal driver ALLEGRO ULN2803A MOTOROLA DIP18 ULN2803A 74HC04 Hex inverter HARRIS CD74HC04M S014 24 1 Uб А 25 1 X1 MOLEX 52207-1890 (R.A.) MOLEX 52207-1890 Α CM098 Header-18 X2 JST 23FF-SF Header-23 JST 23FF-SF 26 1 Α CM095 27 Υ1 ECS ECS-49-20-4 1 Α 4.9152MHz Crystal XTAL200

SECTION 7:

Repair Test Specifications

Repair Test Specifications Clinical Vital Signs Monitor

Original Date: March 29, 1996

Current Revision Date: July 13, 1998

File: 126P175C.DOC

Welch Allyn Inc. All rights reserved This information is considered proprietary and confidential.

Revision 3.0

Note 1: The word "Unit" throughout this document refers to the CBP unit with out pneumatics (tubing and cuff), temperature probe, SpO_2 probe, and main battery attached,

unless other wise noted.

Note 2: All test are performed in the "Detailed Test Mode" or in the "Normal Mode" unless other wise noted.

Note 3: Standard test voltage unless otherwise stated is 6.5 (+/- 0.25) Vdc.

Note 4: All test are performed utilizing the CVSM Repair Software.

Note 5: Unless otherwise stated, all calibrated volumes will be +/- 10cc of the stated volume.

Note 6: Unit software will be equal to or greater than "1.69." If the monitor has Nonin SpO_2 , the Nonin SpO_2 software will be equal to or greater than "5." If the unit has Nellcor SpO_2 , the Nellcor SpO_2 software will be equal to or greater than "1.1.0.6." If the monitor has temperature, temperature software will be equal to or greater than "2.4."

REPAIR TESTS

Leak Tests

- 1. Unit must not leak more than 5 mmHg in a 15 second interval while attached to a 100cc calibrated volume and pressurized to between 245 and 255 mmHg.
- 2. Unit must not leak more than 5 mmHg in a 15 second interval while attached to a 100cc calibrated volume and pressurized to between 45 and 55 mmHg.

Inflation Test

3. Unit must be able to inflate a 250.0cc (+ 50.0cc/- 0cc) calibrated volume from less than 5.0 mmHg to greater than 210.0 mmHg in 7.0 seconds or less.

Dump Test

4. Unit must be able to deflate a 500.0cc (+ 100.0cc/- 0cc) calibrated volume from greater than 260.0 mmHg to less than 15.0 mmHg in 10 seconds or less.

Revision 3.0

Unit Manometer Calibration

5. Internal temperature of the unit must be less than 32 degrees Celsius before performing calibration. Prior to calibration the zero and gain must be set to 128. Prior to calibration the three pressure connection valves must be set to 16384. The zero pot will be adjusted to produce a minimum error (\pm 1 count) when 0(\pm 0.3) mmHg is applied. The count written to the pot must be between 5 and 250. The unit must successfully perform a autozero after this zero pot adjustment. The unit gain will then be calibrated for minimum error value (\pm 0.5 mmHg) when a pressure between 195 mmHg and 205 mmHg is applied. The unit pressure reading will then be adjusted at a pressure between 90 mmHg and 100 mmHg to within \pm 0.5 mmHg of the applied pressure. The unit pressure reading will then be adjusted at a pressure between 190 mmHg and 200 mmHg to within \pm 0.5 mmHg of the applied pressure. The unit pressure reading will then be adjusted at a pressure between 280 mmHg and 290 mmHg to within \pm 0.5 mmHg of the applied pressure. The Pressure Correction Values written to the unit must be between 16384 \pm 1000. Calibration information stored in the unit to include above constants, calibration date and time (local standard date and time), and a four character calibrator's identification signature (the calibrator's three initials and a "*". The "*" will be automatically placed into the signature by the CVSM repair software).

Manometer Accuracy Test

6. Internal temperature of the unit must be less than 32.0 degrees Celsius before performing test. The unit manometer reading must be within +/- 0.75 mmHg of the applied pressure of 0 mmHg +/- 0.3 mmHg. The units manometer must be within +/- 1.5 mmHg of the applied test pressure of 50 mmHg +/- 5 mmHg. The units manometer must be within +/- 1.5 mmHg of the applied test pressure of 100 mmHg +/- 5 mmHg. The units manometer must be within +/- 1.5 mmHg of the applied test pressure of 100 mmHg +/- 5 mmHg. The units manometer must be within +/- 1.5 mmHg of the applied test pressure of 100 mmHg +/- 5 mmHg. The units manometer must be within +/- 1.5 mmHg of the applied test pressure of 150 mmHg +/- 5 mmHg. The units manometer must be within +/- 1.5 mmHg of the applied test pressure of 250 mmHg +/- 5 mmHg. The units manometer must be within +/- 1.5 mmHg of the applied test pressure of 250 mmHg +/- 5 mmHg. The units manometer must be within +/- 1.5 mmHg of the applied test pressure of 250 mmHg +/- 5 mmHg. The units manometer must be within +/- 5 mmHg. The units manometer must be within +/- 1.5 mmHg of the applied test pressure of 250 mmHg +/- 5 mmHg. The units manometer must be within +/- 1.5 mmHg of the applied test pressure of 285 mmHg +/- 5 mmHg.

Deflation Test

7. With the unit connected to a large cuff and a target inflation pressure of 200 mmHg, have the unit perform a complete "normal" BP cycle. There are no requirements for step size for the steps after the pump has stopped (Note: Steps zero and one are dummy steps = 0.0 mmHg and are ignored). For steps two and three, the size of the step must be between 3.0 mmHg and 11.0 mmHg. Step four and all other steps above or equal to 40 mmHg, must be between 7.0 mmHg and 11.0 mmHg. All steps below 40 mmHg except for the last step will be between 4.5 mmHg and 10 mmHg. The last step will be between 0.01 mmHg and 10 mmHg.

Voltage and Current Testing

- 8. The unit battery voltage reading must be calibrated to within +/- 0.05 Vdc at a nominal calibrated battery voltage input of 5.5 Vdc +0.5,-0.0 Vdc. Calibration should include a verification test at this specified test point. A four character calibration signature will be written to unit upon satisfactory calibration completion (the calibrator's three initials and a "*". The "*" will be automatically placed into the signature by the CVSM repair software).
- 9. Unit "Blank" mode current must less than or equal to 80.0 mA. "Blank" mode current is determined when all LED segments are off, SpO₂ mode is off, and the Temperature board is asleep.
- 10. Unit "Idle" mode current must be less than or equal to 800 mA. "Idle" mode current is determined when all LED segments are on, SpO₂ mode is off and the Temperature board is asleep.
- 11. Unit "Valve" mode current must be less than or equal to 140 mA. "Valve" mode current is determined by placing the unit into the "Blank" mode, actuating the valve on, recording the current then subtracting the "Blank" mode current for test current.
- 12. Unit "Pump" mode current must be less than or equal to 550 mA. "Pump" mode current is determined by unit into "Blank" mode, actuating the valve on, operating the pump on, recording the current then subtracting the "Valve" mode current from the test current.
- 13. Internal electrical noise of the unit's pressure channel determined by using serial 1 second noise sample command must be less than or equal to 0.05 mmHg.

Hardware Fail-safe Tests

- 14. "Over pressure test": Units hardware must detect over pressure on unit pneumatic system between 296.0 mmHg and 329.0 mmHg.
- 15. "Over 15 mmHg test": Unit hardware must detect if the pneumatic system has been pressurized greater than 15 mmHg for more than 155 second but less than 180 seconds.
- 16. "Under 15 mmHg test": With the unit in the non_stat automatic mode (timed automatic blood pressure cycle), the unit's hardware will not allow an automatic cycle if the pressure has been less than 15mmHg for less than 25 seconds. The unit's hardware must allow an automatic cycle if the pressure has been less than 15mmHg for more than 35 seconds.

Revision 3.0

SpO₂ Option Testing (Nonin)

- 17. Note: setting for this test are specific to the "Nonin Patient Simulator" model 8000S. Accuracy of the SpO₂ board after 25 second stabilization period must be within +/-2% O₂ and +/- 2 BPM. Values are 98% O₂ and 80 BPM.
- 18. Unit "SpO₂" mode current must be less than or equal to 80.0 mA. "SpO₂" mode current is determined by turning off all the LEDs, putting the Temperature board asleep, actuating the SpO₂ and waiting 25 second for stabilization, recording currnt then subtracting "Blank" mode current from the test current.

SpO₂ Option Testing (Nellcor)

- 19. Note: Settings for this test are specific to the "Nellcor Patient Simulator" model SRC2. Accuracy of the Nellcor SpO_2 board after 25 second stabilization period must be within +/- 3% O2 and +/- 2 BPM. Values are 81% O2 and 112 BPM.
- 20. Unit "SpO₂" mode current must be less than or equal to 120 mA. "SpO₂" mode current is determined by turning off all LEDs, putting the Temperature board asleep, actuating the SpO₂ and waiting 25 seconds for stabilization, reording current the subtracting "Blank" mode current from the test current.

Temperature Option Testing

- 21. The accuracy of the Temperature board must be within +/- 0.1 degree F for readings with a nominal temperature of 97.3 degrees F (36.3 C \pm .1 C) (Using the CAL Key)
- 22. The unit must be able to read a temperature of 96.4 degrees F (35.8 C) and a temperature of

106 degrees F (41.1 C) within +/- 0.3 degrees F (using Diatek 9600 Calibrator to obtain

temperatures). Note: if using a water bath to take temperature reading, the temperature of the bath should be between 84 (28.8 C)and 106 (41.1 C)degrees F and the reading must be within +/- 1.0 degrees F measure against a temperature standard that is accurate to +/- 1 degree F.

23. Unit "Temperature" mode current must be less than or equal to 15.0 mA. "Temperature" mode current is determined by turning off all LEDs, turning SpO2 mode off, actuating the Temperature board, waiting 5 seconds, recording current then subtracting "Blank" mode current from test current.

Printer Option Testing

24. The printer must be able to print out test pattern 1 and test pattern 2 (small and large ASCII characters (test 1) gray solid field (test 2)). The technician will subjectively determine if the print quality is sufficient.

RS232 Testing

25. The RS232 communication operation will be confirmed with successful serial transmit and receive.